Communications in Mathematical Physics

, Volume 257, Issue 1, pp 87–117

Dispersive Estimates for Schrödinger Operators in Dimension Two

Article

DOI: 10.1007/s00220-004-1262-9

Cite this article as:
Schlag, W. Commun. Math. Phys. (2005) 257: 87. doi:10.1007/s00220-004-1262-9

Abstract

We prove L1(ℝ2)→L(ℝ2) for the two-dimensional Schrödinger operator −Δ+V with the decay rate t−1. We assume that zero energy is neither an eigenvalue nor a resonance. This condition is formulated as in the recent paper by Jensen and Nenciu on threshold expansions for the two-dimensional resolvent.

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Division of Astronomy, Mathematics, and Physics PasadenaUSA