1.

Bidegaray,~B.: Invariant measures for some partial differential equations. Physica D

**82**, 340–364 (1995)

MathSciNetMATH2.

Binder,~K., Heermann,~D.W.: *Monte Carlo Simulation in Statistical Physics.* Fourth edition. Springer Series in Solid-State Sciences, Vol. **80**, Berlin: Springer-Verlag, 2002

3.

Birkhoff,~G., Rota,~G.-C.: *Ordinary Differential Equations.* Second edition. Waltham: Blaisdell Publishing Co., 1969

4.

Biskamp,~D.: *Nonlinear Magnetohydrodynamics.* Cambridge Monographs in Plasma Physics. Cambridge: Cambridge Univ. Press,1993

5.

Bolthausen,~E.: On the probability of large deviations in Banach spaces. Ann. Probab.

**12**, 427–435 (1984)

MathSciNetMATH6.

Boucher,~C., Ellis,~R.S., Turkington,~B.: Derivation of maximum entropy principles in two-dimensional turbulence via large deviations. J. Stat. Phys

**98**, 1235–1278 (2000)

CrossRefMathSciNetMATH7.

Bourgain,~J.: Periodic nonlinear Schrödinger equation and invariant measures. Commun. Math. Phys.

**166**, 1–26 (1994)

MathSciNetMATH8.

Bouchet,~F., Sommeria,~J.: Emergence of intense jets and Jupiter’s Great Red Spot as maximum-entropy structures. J. Fluid Mech.

**464**, 165–207 (2002)

CrossRefMATH9.

Cai,~D., Majda,~A.J., McLaughlin,~D.W., Tabak,~E.G.: Spectral bifurcations in dispersive wave turbulence. Proc. Nat. Acad. Sci.

**96**, 14216–14221 (1999)

CrossRefMATH10.

Cai,~D., McLaughlin,~D.W.: Chaotic and turbulent behavior of unstable 1D nonlinear dispersive waves. J. Math. Phys.

**41**, 4125–4153 (2000)

CrossRefMathSciNetMATH11.

Dembo,~A., Zeitouni,~O.: *Large Deviations Techniques and Applications*. Second edition. New York: Spring-Verlag, 1998

12.

DiBattista,~M.T., Majda,~A.J., Grote,~M.J.: Meta-stability of equilibrium statistical structures for prototype geophysical flows with damping and driving. Physica D

**151**, 271–304 (2001)

CrossRefMathSciNetMATH13.

Dowling,~T.E.: Dynamics of Jovian atmospheres. Ann. Rev. Fluid Mech.

**27**, 293–334 (1995)

CrossRef14.

Dupuis,~P., Ellis,~R.S.: *A Weak Convergence Approach to the Theory of Large Deviations*. New York: John Wiley & Sons, 1997

15.

Dyachenko,~S., Zakharov,~V.E., Pushkarev,~A.N., Shvets,~V.F., Yan’kov,~V.V.: Soliton turbulence in nonintegrable wave systems. Soviet Phys. JETP **69**, 1144–1147 (1989)

16.

Ellis,~R.S.: *Entropy, Large Deviations and Statistical Mechanics*. New York: Springer-Verlag, 1985

17.

Ellis,~R.S., Haven,~K., Turkington,~B.: Large deviation principles and complete equivalence and nonequivalence results for pure and mixed ensembles. J. Stat. Phys.

**101**, 999–1064 (2000)

CrossRefMathSciNetMATH18.

Gikhman,~I.I., Skorohod,~A.V.: *The Theory of Stochastic Processes I*. Trans. by S. Kotz, Berlin: Springer-Verlag, 1974

19.

Hasegawa,~A.: Self-organization processes in continuous media. Adv. Phys.

**34**, 1–42 (1985)

MathSciNetMATH20.

Isichenko,~M.B., Gruzinov,~A.V.: Isotopological relaxation, coherent structures, and Gaussian turbulence in two-dimensional magnetohydrodynamics. Phys. Plasmas

**1**, 1802–1816 (1994)

CrossRefMathSciNet21.

Itô,~K., McKean,~H.P.: *Diffusion Processes and Their Sample Paths*. New York/Berlin: Academic Press/Springer Verlag, 1965

22.

Jordan,~R., Josserand,~C.: Self-organization in nonlinear wave turbulence. Phys. Rev. E

**61**, 1527–1539 (2000)

CrossRefMathSciNet23.

Jordan,~R., Josserand,~C.: Statistical equilibrium states for the nonlinear Schrödinger equation. Math. Comp. Simulation

**55**, 433–447 (2001)

CrossRefMATH24.

Jordan,~R., Turkington,~B.: Ideal magnetofluid turbulence in two dimensions J. Stat. Phys.

**87**, 661–695 (1997)

MathSciNetMATH25.

Jordan,~R., Turkington,~B., Zirbel,~C.L.: A mean-field statistical theory for the nonlinear Schrödinger equation. Physica D

**137**, 353–378 (2000)

CrossRefMathSciNetMATH26.

Kevrekidis,~P.G., Rasmussen,~K.O., Bishop,~A.R.: The discrete nonlinear Schrödinger equation: A survey of recent results. Int. J. Mod. Phys. B.

**15**, 2833–2900 (2001)

CrossRef27.

Lebowitz,~J.L., Rose,~H.A., Speer,~E.R.: Statistical mechanics of a nonlinear Schrödinger equation. J. Stat. Phys., **50**, 657–687 (1988)

28.

Majda,~A.J., McLaughlin,~D.W., Tabak,~E.G.: A one-dimensional model for dispersive wave turbulence. J. Nonlinear Sci.

**7**, 9–44 (1997)

MathSciNetMATH29.

Marcus,~P.S.: Jupiter’s Great Red Spot and other vortices. Annual Rev. Astronomy and Astrophys.

**31**, 523–573 (1993)

CrossRef30.

McKean,~H.P.: Statistical mechanics of nonlinear wave equations IV. Cubic Schrödinger. Commun. Math. Phys.**168**, 479–491 (1995)

31.

Rasmussen,~J.J., Rypdal,~K.: Blow-up in nonlinear Schroedinger equations–I: A general review. Physica Scripta

**33**, 481–504 (1986)

MathSciNetMATH32.

Segre,~E., Kida,~S.: Late states of incompressible 2d decaying vorticity fields. Fluid Dyn. Res.

**23**, 89–112 (1998)

CrossRefMathSciNetMATH33.

Turkington,~B., Majda,~A.J., Haven,~K., DiBattista,~M.: Statistical equilibrium predictions of jets and spots on Jupiter. Proc. Nat. Acad. Sci. USA

**98**, 12346–12350 (2001)

CrossRefMathSciNetMATH34.

Zakharov,~V.E., Pushkarev,~A.N., Shvets,~V.F., Yan’kov,V.V.: Soliton turbulence. JETP Lett. **48**, 83–86 (1988)

35.

Zhidkov,~P.E.: On an invariant measure for a nonlinear Schrödinger equation. Soviet Math. Dokl.

**43**, 431–434 (1991)

MathSciNetMATH