Communications in Mathematical Physics

, Volume 236, Issue 2, pp 251–280

Extended Divergence-Measure Fields and the Euler Equations for Gas Dynamics

Authors

  • Gui-Qiang Chen
    • Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston, IL 60208-2730, USA. E-mail: gqchen@math.northwestern.edu
  • Hermano Frid
    • Instituto de Matemática Pura e Aplicada – IMPA, Estrada Dona Castorina, 110, Rio de Janeiro, RJ 22460-320, Brazil. E-mail: hermano@impa.br

DOI: 10.1007/s00220-003-0823-7

Cite this article as:
Chen, G. & Frid, H. Commun. Math. Phys. (2003) 236: 251. doi:10.1007/s00220-003-0823-7

Abstract:

 A class of extended vector fields, called extended divergence-measure fields, is analyzed. These fields include vector fields in Lp and vector-valued Radon measures, whose divergences are Radon measures. Such extended vector fields naturally arise in the study of the behavior of entropy solutions of the Euler equations for gas dynamics and other nonlinear systems of conservation laws. A new notion of normal traces over Lipschitz deformable surfaces is developed under which a generalized Gauss-Green theorem is established even for these extended fields. An explicit formula is obtained to calculate the normal traces over any Lipschitz deformable surface, suitable for applications, by using the neighborhood information of the fields near the surface and the level set function of the Lipschitz deformation surfaces. As an application, we prove the uniqueness and stability of Riemann solutions that may contain vacuum in the class of entropy solutions of the Euler equations for gas dynamics.

Copyright information

© Springer-Verlag Berlin Heidelberg 2003