, Volume 211, Issue 4, pp 262-268

Comparative investigations of gluten proteins from different wheat species I. Qualitative and quantitative composition of gluten protein types

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

In contrast to the hexaploid common (bread) wheat, little information is available on the qualitative and quantitative compositions of gluten proteins from other cultivated wheat species. Therefore, representatives of hexaploid spelt, tetraploid durum wheat and emmer, and diploid einkorn were compared with three classes of common wheat (winter wheat, spring wheat, wheat rye hybrid). The flours were extracted to yield total endosperm proteins and the gluten protein fractions (gliadins and glutenin subunits). The extracts were characterised using sodium dodecyl sulfate polyacrylamide gel electrophoresis and reversed-phase HPLC; both methods revealed that gluten protein groups and types known from common wheat (ω-, α-, γ-gliadins, HMW and LMW subunits of glutenin) were present in all species. The HPLC platterns of gliadins and glutenin subunits from species with the same genome composition (common wheat/spelt or durum wheat/emmer) were related, and those of einkorn quite different. According to the quantities determined by reversed-phase HPLC, α-gliadins were predominant in most cases, followed by γ-gliadins and LMW subunits; ω-gliadins and HMW subunits were generally minor components. Common wheats were characterised by the highest proportions of total glutenins and HMW subunits, which are known to be important for breadmaking quality. Moreover, the lower ratio of gliadins to glutenins was typical. Emmer had the lowest proportions of total glutenins and of HMW and LMW subunits, together with einkorn the highest proportion of α-gliadins, and, by far, the highest ratio of gliadins to glutenins. The values for spelt and durum wheat were mostly in a medium range between common wheats, emmer, and einkorn, respectively. Amongst common wheats, spring wheat was characterised by more balanced quantities of α- and γ-gliadins, and wheat rye hybrid by the highest proportions of ω-gliadins.

Received: 26 November 1999