Skip to main content
Log in

Phytochemicals in native Peruvian Capsicum pubescens (Rocoto)

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Peru is considered a hotspot with maybe the highest diversity of domesticated chili peppers. Capsicum pubescens is the least explored domesticated chili pepper, especially with regard to its chemical composition. Thirty-two different C. pubescens (Rocoto) accessions, out of the national Peruvian Capsicum germplasm collection at the Instituto Nacional de Innovación Agraria, were selected for investigating the phytochemical content and its variability. After drying and milling, the fruits were analyzed for the three major capsaicinoids (capsaicin, dihydrocapsaicin and nordihydrocapsaicin), flavonoid aglycons (quercetin, kaempferol, luteolin, apigenin), total polyphenol content, antioxidant capacity, tocopherol (α-, β- and γ-) content, fat content, ascorbic acid content, surface color and extractable color. The concentrations for selected traits ranged as follows: total capsaicinoids from 55 to 410 mg/100 g (corresponding to ca. 8400–60,000 SHU), total polyphenols from 1.8 to 2.5 g gallic acid equivalents/100 g, antioxidant capacity from 2.4 to 4.6 mmol Trolox/100 g and tocopherols from 6.8 to 18.4 mg/100 g. Only very few of the accessions contained detectable amounts of the major chili flavonoid quercetin. The results indicate that C. pubescens is generally less diverse and exhibits a lower content of almost all analyzed traits when compared to 147 Peruvian chili pepper accessions belonging to the other four domesticated species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. DeWitt D, Bosland PW (2009) The complete chile pepper book. A gardener’s guide to choosing, growing, preserving, and cooking. Timber Press, Portland

    Google Scholar 

  2. Bosland PW, Votava EJ (2012) Peppers. Vegetable and spice capsicums, 2nd edn. CABI, Cambridge

    Book  Google Scholar 

  3. Rodríguez-Burruezo A, Prohens J, Raigón MD, Nuez F (2009) Variation for bioactive compounds in ají (Capsicum baccatum L.) and rocoto (C. pubescens R. & P.) and implications for breeding. Euphytica 170:169–181

    Article  Google Scholar 

  4. Oboh G, Rocha J (2007) Distribution and antioxidant activity of polyphenols in ripe and unripe tree pepper (Capsicum pubescens). J Food Biochem 31:456–473

    Article  CAS  Google Scholar 

  5. Pérez-Grajales M, González-Hernández V, Mendoza-Castillo M, Peña-Valdivia C (2004) Physiological characterization of manzano hot pepper (Capsicum pubescens R & P) landraces. J Am Soc Hortic Sci 129:88–92

    Google Scholar 

  6. Yamamoto S, Djarwaningsih T, Wiriadinata H (2013) Capsicum pubescens (Solanaceae) in Indonesia: its history, taxonomy, and distribution. Econ Bot 67:161–170

    Article  Google Scholar 

  7. Scoville WL (1912) Note on Capsicums. J Am Pharm Assoc 1:453

    Article  CAS  Google Scholar 

  8. AOAC Official Method 995.03 (2000) Capsaicinoids in Capsicum and their extractives, vol 43, 17th edn. AOAC Official Methods of Analysis, Maryland, pp 14–16

    Google Scholar 

  9. Bosland P, Collins M (1994) Rare and novel capsaicinoid profiles in Capsicum. Capsicum and Eggplant Newsl 13:48–51

    Google Scholar 

  10. Zewdie Y, Bosland PW, Steiner R (2001) Combining ability and heterosis for capsaicinoids in Capsicum pubescens. Hort Sci 36:1315–1317

    CAS  Google Scholar 

  11. Collins M, Wasmund LM, Bosland PW (1995) Improved method for quantifying capsaicinoids in Capsicum using high performance liquid chromatography. Hort Sci 30:137–139

    CAS  Google Scholar 

  12. Sanchez-Sanchez H, Gonzalez-Hernandez VA, Cruz-Pérez AB, Pérez-Grajales M, Gutiérrez-Espinosa M, Gardea-Béjar A, Gomez-Lim M (2010) Inheritance of capsaicinoids in manzano hot chili pepper (Capsicum pubescens R. and P.). Agrociencia 44:655–665

    Google Scholar 

  13. Kollmannsberger H, Rodríguez-Burruezo A, Nitz S, Nuez F (2011) Volatile and capsaicinoid composition of ají (Capsicum baccatum) and rocoto (Capsicum pubescens), two Andean species of chile peppers. J Sci Food Agric 91:1598–1611

    Article  CAS  Google Scholar 

  14. Cruz-Pérez AB, Gonzalez-Hernandez VA, Soto-Hernández RM, Gutiérrez-Espinosa M, Gardea-Béjar AA, Pérez-Grajales M (2007) Capsaicinoids, vitamin C and heterosis during fruit development of manzano hot pepper. Agrociencia 41:627–635

    Google Scholar 

  15. Rodríguez-Burruezo A, González-Mas MdC, Nuez F (2010) Carotenoid composition and vitamin A value in Ají (Capsicum baccatum L.) and rocoto (C. pubescens R. & P.), 2 pepper species from the Andean Region. J Food Sci 75(8):446–453

    Article  Google Scholar 

  16. Ornelas-Paz JdJ, Martínez-Burrola JM, Ruiz-Cruz S, Santana-Rodríguez V, Ibarra-Junquera V, Olivas GI, Pérez-Martínez JD (2010) Effect of cooking on the capsaicinoids and phenolics contents of Mexican peppers. Food Chem 119:1619–1625

    Article  CAS  Google Scholar 

  17. Vera-Guzmán AM, Chávez-Servia JL, Carrillo-Rodríguez JC, López MG (2011) Phytochemical evaluation of wild and cultivated pepper (Capsicum annuum L. and C. pubescens Ruiz & Pav.) from Oaxaca, Mexico. Chil J Agric Res 71:578–585

    Article  Google Scholar 

  18. Knekt P, Kumpulainen J, Järvinen R, Rissanen H, Heliövaara M, Reunanen A, Hakulinen T, Aromaa A (2002) Flavonoid intake and risk of chronic diseases. Am J Clin Nutr 76:560–568

    CAS  Google Scholar 

  19. Jarret RL, Levy IJ, Potter TL, Cermak SC (2013) Seed oil and fatty acid composition in Capsicum spp. J Food Compos Anal 30:102–108

    Article  CAS  Google Scholar 

  20. Ou LJ, Zou XX (2012) The photosynthetic stress responses of five pepper species are consistent with their genetic variability. Photosynthetica 50:49–55

    Article  CAS  Google Scholar 

  21. Ou LJ, Dai XZ, Zhang ZQ, Zou XX (2011) Responses of pepper to waterlogging stress. Photosynthetica 49:339–345

    Article  CAS  Google Scholar 

  22. Meckelmann SW, Riegel DW, van Zonneveld M, Ríos L, Peña K, Ugas R, Quinonez L, Mueller-Seitz E, Petz M (2013) Compositional characterization of native Peruvian chili peppers (Capsicum spp.). J Agric Food Chem 61:2530–2537

    Article  CAS  Google Scholar 

  23. Meckelmann SW, Riegel DW, van Zonneveld M, Ríos L, Peña K, Mueller-Seitz E, Petz M (2015) Capsaicinoids, flavonoids, tocopherols, antioxidant capacity and color attributes in 23 native Peruvian chili peppers (Capsicum spp.) grown in three different locations. Eur Food Res Technol 240:273–283

    Article  CAS  Google Scholar 

  24. Singelton VM, Rossi J (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

    Google Scholar 

  25. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237

    Article  CAS  Google Scholar 

  26. Grebenstein N, Frank J (2012) Rapid baseline-separation of all eight tocopherols and tocotrienols by reversed-phase liquid-chromatography with a solid-core pentafluorophenyl column and their sensitive quantification in plasma and liver. J Chromatogr A 1243:39–46

    Article  CAS  Google Scholar 

  27. American Spice Trade Association (1997) Official analytical methods of the American Spice Trade Association, 4th edn. ASTA, Englewood Cliffs

    Google Scholar 

  28. Antonious GF, Jarret RL (2006) Screening Capsicum accessions for capsaicinoids content. J Environ Sci Health B 41:717–729

    Article  Google Scholar 

  29. Ravishankar GA, Suresh B, Giridhar P, Ramachandra Rao S, Sudhakar Johnson T (2003) Biotechnological studies on Capsicum for metabolite production and plant improvement. In: De AK (ed) Capsicum: the genus Capsicum. Taylor & Francis Ltd, London, pp 96–128

    Google Scholar 

  30. Huang D, Ou B, Prior RL (2005) The chemistry behind antioxidant capacity assays. J Agric Food Chem 53:1841–1856

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was carried out within the international and interdisciplinary research project “Rescue and Promotion of Native Chilies in their Centre of Origin,” led by Bioversity International and funded by the Federal Ministry for Economic Cooperation and Development through Deutsche Gesellschaft für Internationale Zusammenarbeit, GIZ (2010–2013). We thank Jorge Medina from INIA Peru for growing the C. pubescens accessions and harvesting the fruits. We are also grateful to Christina Schroeders, Matthias Luepertz, Désirée Marquenie, Frederik Lessmann and Yvonne Rockser for laboratory assistance in the NIR analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven W. Meckelmann.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human and animal subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meckelmann, S.W., Jansen, C., Riegel, D.W. et al. Phytochemicals in native Peruvian Capsicum pubescens (Rocoto). Eur Food Res Technol 241, 817–825 (2015). https://doi.org/10.1007/s00217-015-2506-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-015-2506-y

Keywords

Navigation