Skip to main content
Log in

The ability of Lactobacillus adhesin EF-Tu to interfere with pathogen adhesion

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Probiotic bacteria play an important role in preventing widespread colonization of enteropathogens in human gastrointestinal tract. Lactobacillus plantarum CS24.2, isolated from child fecal sample, and L. rhamnosus GG, a widely accepted commercial probiotic strain, were examined in vitro for their ability to inhibit the colonization of enteropathogenic Escherichia coli (EPEC) and Salmonella enterica serovar Typhi (S. Typhi) on human intestinal epithelial cell line (Caco-2). Different adhesion assays such as competitive inhibition, adhesion inhibition, and displacement were carried out for the assessment of antagonistic activity of probiotic bacteria toward adhesion of enteropathogens to Caco-2 cells. Both the probiotic bacteria were able to inhibit pathogen colonization between 30–90% under different assay conditions. The gene coding for the known Lactobacillus adhesion factor—elongation factor Tu (EF-Tu)—was amplified from L. plantarum CS24.2 and cloned into E. coli expression vector, pET30(a). The partially purified recombinant EF-Tu was able to inhibit 50% adhesion of L. plantarum CS24.2 to Caco-2 cells but there was no effect on L. rhamnosus GG adhesion under competitive inhibition assay. To investigate the functional role of lactobacilli EF-Tu in pathogen inhibition to Caco-2 cells, competitive adhesion assay was carried out and there was significant reduction in the adhesion of E. coli (35.3%) and S. Typhi (47.7%) to Caco-2 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Coconnier MH, Bernet MF, Kerneis S, Chauviere G, Fourniat J, Servin AL (1993) Inhibition of adhesion of enteroinvasive pathogens to human intestinal Caco-2 cells by Lactobacillus acidophilus strain LB decreases bacterial invasion. FEMS Microbiol Lett 110:299–305

    Article  CAS  Google Scholar 

  2. Servin AL, Coconnier MH (2003) Adhesion of probiotic strains to the intestinal mucosa and interaction with pathogens. Best Pract Res Clin Gastroenterol 17:741–754

    Article  CAS  Google Scholar 

  3. Doyle MP, Schoeni JL (1984) Survival and growth characteristics of Escherichia coli associated with hemorrhagic colitis. Appl Environ Microbiol 48:855–856

    CAS  Google Scholar 

  4. Rabsch W, Andrews HL, Kingsley RA, Prager R, Tschape H, Adams LG, Baumler AJ (2002) Salmonella enterica serotype Typhimurium and its host-adapted variants. Infect Immun 70:2249–2255

    Article  CAS  Google Scholar 

  5. Fooks LJ, Gibson GR (2002) Probiotics as modulators of the gut flora. Br J Nutr 88(Suppl 1):S39–S49

    Article  CAS  Google Scholar 

  6. Servin AL (2004) Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbiol Rev 28:405–440

    Article  CAS  Google Scholar 

  7. Yan F, Polk DB (2002) Probiotic bacterium prevents cytokine-induced apoptosis in intestinal epithelial cells. J Biol Chem 277:50959–50965

    Article  CAS  Google Scholar 

  8. Doron S, Snydman DR, Gorbach SL (2005) Lactobacillus GG: bacteriology and clinical applications. Gastroenterol Clin North Am 34: 483–498, ix

    Google Scholar 

  9. Bousvaros A, Guandalini S, Baldassano RN, Botelho C, Evans J, Ferry GD, Goldin B, Hartigan L, Kugathasan S, Levy J, Murray KF, Oliva-Hemker M, Rosh JR, Tolia V, Zholudev A, Vanderhoof JA, Hibberd PL (2005) A randomized, double-blind trial of Lactobacillus GG versus placebo in addition to standard maintenance therapy for children with Crohn’s disease. Inflamm Bowel Dis 11:833–839

    Article  Google Scholar 

  10. Coconnier MH, Klaenhammer TR, Kerneis S, Bernet MF, Servin AL (1992) Protein-mediated adhesion of Lactobacillus acidophilus BG2FO4 on human enterocyte and mucus-secreting cell lines in culture. Appl Environ Microbiol 58:2034–2039

    CAS  Google Scholar 

  11. Tuomola EM, Salminen SJ (1998) Adhesion of some probiotic and dairy Lactobacillus strains to Caco-2 cell cultures. Int J Food Microbiol 41:45–51

    Article  CAS  Google Scholar 

  12. Laparra JM, Sanz Y (2009) Comparison of in vitro models to study bacterial adhesion to the intestinal epithelium. Lett Appl Microbiol 49:695–701

    Article  CAS  Google Scholar 

  13. Coconnier MH, Lievin V, Bernet-Camard MF, Hudault S, Servin AL (1997) Antibacterial effect of the adhering human Lactobacillus acidophilus strain LB. Antimicrob Agents Chemother 41:1046–1052

    CAS  Google Scholar 

  14. Lehto EM, Salminen SJ (1997) Inhibition of Salmonella typhimurium adhesion to Caco-2 cell cultures by Lactobacillus strain GG spent culture supernate: only a pH effect? FEMS Immunol Med Microbiol 18:125–132

    Article  CAS  Google Scholar 

  15. Jankowska A, Laubitz D, Antushevich H, Zabielski R, Grzesiuk E (2008) Competition of Lactobacillus paracasei with Salmonella enterica for adhesion to Caco-2 cells. J Biomed Biotechnol 2008:357964

    Article  Google Scholar 

  16. Granato D, Bergonzelli GE, Pridmore RD, Marvin L, Rouvet M, Corthesy-Theulaz IE (2004) Cell surface-associated elongation factor Tu mediates the attachment of Lactobacillus johnsonii NCC533 (La1) to human intestinal cells and mucins. Infect Immun 72:2160–2169

    Article  CAS  Google Scholar 

  17. Buck BL, Altermann E, Svingerud T, Klaenhammer TR (2005) Functional analysis of putative adhesion factors in Lactobacillus acidophilus NCFM. Appl Environ Microbiol 71:8344–8351

    Article  CAS  Google Scholar 

  18. Miyoshi Y, Okada S, Uchimura T, Satoh E (2006) A mucus adhesion promoting protein, MapA, mediates the adhesion of Lactobacillus reuteri to Caco-2 human intestinal epithelial cells. Biosci Biotechnol Biochem 70:1622–1628

    Article  CAS  Google Scholar 

  19. Johnson-Henry KC, Hagen KE, Gordonpour M, Tompkins TA, Sherman PM (2007) Surface-layer protein extracts from Lactobacillus helveticus inhibit enterohaemorrhagic Escherichia coli O157:H7 adhesion to epithelial cells. Cell Microbiol 9:356–367

    Article  CAS  Google Scholar 

  20. Jacobson GR, Rosenbusch JP (1976) Abundance and membrane association of elongation factor Tu in E. coli. Nature 261:23–26

    Article  CAS  Google Scholar 

  21. Porcella SF, Belland RJ, Judd RC (1996) Identification of an EF-Tu protein that is periplasm-associated and processed in Neisseria gonorrhoeae. Microbiology 142(Pt 9):2481–2489

    Article  CAS  Google Scholar 

  22. Gaudana SB, Dhanani AS, Bagchi T (2010) Probiotic attributes of Lactobacillus strains isolated from food and human origin. Br J Nutr 103:1620–1628

    Article  CAS  Google Scholar 

  23. Chen X, Xu J, Shuai J, Chen J, Zhang Z, Fang W (2007) The S-layer proteins of Lactobacillus crispatus strain ZJ001 is responsible for competitive exclusion against Escherichia coli O157:H7 and Salmonella typhimurium. Int J Food Microbiol 115:307–312

    Article  CAS  Google Scholar 

  24. Isolauri E, Sutas Y, Kankaanpaa P, Arvilommi H, Salminen S (2001) Probiotics: effects on immunity. Am J Clin Nutr 73:444S–450S

    CAS  Google Scholar 

  25. Kim Y, Kim SH, Whang KY, Kim YJ, Oh S (2008) Inhibition of Escherichia coli O157:H7 attachment by interactions between lactic acid bacteria and intestinal epithelial cells. J Microbiol Biotechnol 18:1278–1285

    CAS  Google Scholar 

  26. Guarner F, Malagelada JR (2003) Gut flora in health and disease. Lancet 361:512–519

    Article  Google Scholar 

  27. Winkler P, Ghadimi D, Schrezenmeir J, Kraehenbuhl JP (2007) Molecular and cellular basis of microflora-host interactions. J Nutr 137:756S–772S

    CAS  Google Scholar 

  28. Sambuy Y, De Angelis I, Ranaldi G, Scarino ML, Stammati A, Zucco F (2005) The Caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell functional characteristics. Cell Biol Toxicol 21:1–26

    Article  CAS  Google Scholar 

  29. Lee YK, Puong KY, Ouwehand AC, Salminen S (2003) Displacement of bacterial pathogens from mucus and Caco-2 cell surface by lactobacilli. J Med Microbiol 52:925–930

    Article  Google Scholar 

  30. Lee YK, Puong KY (2002) Competition for adhesion between probiotics and human gastrointestinal pathogens in the presence of carbohydrate. Br J Nutr 88(Suppl 1):S101–S108

    Article  CAS  Google Scholar 

  31. Collado MC, Grzeskowiak L, Salminen S (2007) Probiotic strains and their combination inhibit in vitro adhesion of pathogens to pig intestinal mucosa. Curr Microbiol 55:260–265

    Article  CAS  Google Scholar 

  32. Lievin V, Peiffer I, Hudault S, Rochat F, Brassart D, Neeser JR, Servin AL (2000) Bifidobacterium strains from resident infant human gastrointestinal microflora exert antimicrobial activity. Gut 47:646–652

    Article  CAS  Google Scholar 

  33. Candela M, Perna F, Carnevali P, Vitali B, Ciati R, Gionchetti P, Rizzello F, Campieri M, Brigidi P (2008) Interaction of probiotic Lactobacillus and Bifidobacterium strains with human intestinal epithelial cells: adhesion properties, competition against enteropathogens and modulation of IL-8 production. Int J Food Microbiol 125:286–292

    Article  CAS  Google Scholar 

  34. Goossens D, Jonkers D, Russel M, Thijs A, van den Bogaard A, Stobberingh E, Stockbrugger R (2005) Survival of the probiotic, L. plantarum 299v and its effects on the faecal bacterial flora, with and without gastric acid inhibition. Dig Liver Dis 37:44–50

    Article  CAS  Google Scholar 

  35. Swetwiwathana A, Pilasombut K, Sethakul J (2008) Screening of bacteriocin-producing lactic acid bacteria isolated from Thai fermented meat for probiotic prospect. J Biotechnol 136:S737–S738

    Article  Google Scholar 

  36. Castaldo C, Vastano V, Siciliano RA, Candela M, Vici M, Muscariello L, Marasco R, Sacco M (2009) Surface displaced alfa-enolase of Lactobacillus plantarum is a fibronectin binding protein. Microb Cell Fact 8:14

    Article  Google Scholar 

  37. Kinoshita H, Uchida H, Kawai Y, Kawasaki T, Wakahara N, Matsuo H, Watanabe M, Kitazawa H, Ohnuma S, Miura K, Horii A, Saito T (2008) Cell surface Lactobacillus plantarum LA 318 glyceraldehyde-3-phosphate dehydrogenase (GAPDH) adheres to human colonic mucin. J Appl Microbiol 104:1667–1674

    Article  CAS  Google Scholar 

  38. Kleerebezem M, Boekhorst J, van Kranenburg R, Molenaar D, Kuipers OP, Leer R, Tarchini R, Peters SA, Sandbrink HM, Fiers MW, Stiekema W, Lankhorst RM, Bron PA, Hoffer SM, Groot MN, Kerkhoven R, de Vries M, Ursing B, de Vos WM, Siezen RJ (2003) Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci U S A 100:1990–1995

    Article  CAS  Google Scholar 

  39. Velez MP, Petrova MI, Lebeer S, Verhoeven TL, Claes I, Lambrichts I, Tynkkynen S, Vanderleyden J, De Keersmaecker SC (2010) Characterization of MabA, a modulator of Lactobacillus rhamnosus GG adhesion and biofilm formation. FEMS Immunol Med Microbiol 59:386–398

    CAS  Google Scholar 

  40. Kankainen M, Paulin L, Tynkkynen S, von Ossowski I, Reunanen J, Partanen P, Satokari R, Vesterlund S, Hendrickx AP, Lebeer S, De Keersmaecker SC, Vanderleyden J, Hamalainen T, Laukkanen S, Salovuori N, Ritari J, Alatalo E, Korpela R, Mattila-Sandholm T, Lassig A, Hatakka K, Kinnunen KT, Karjalainen H, Saxelin M, Laakso K, Surakka A, Palva A, Salusjarvi T, Auvinen P, de Vos WM (2009) Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human-mucus binding protein. Proc Natl Acad Sci U S A 106:17193–17198

    Article  CAS  Google Scholar 

  41. Bergonzelli GE, Granato D, Pridmore RD, Marvin-Guy LF, Donnicola D, Corthesy-Theulaz IE (2006) GroEL of Lactobacillus johnsonii La1 (NCC 533) is cell surface associated: potential role in interactions with the host and the gastric pathogen Helicobacter pylori. Infect Immun 74:425–434

    Article  CAS  Google Scholar 

  42. Munoz-Provencio D, Perez-Martinez G, Monedero V (2009) Characterization of a fibronectin-binding protein from Lactobacillus casei BL23. J Appl Microbiol 108:1050–1059

    Article  Google Scholar 

  43. Pancholi V, Fischetti VA (1992) A major surface protein on group a streptococci is a glyceraldehyde-3-phosphate-dehydrogenase with multiple binding activity. J Exp Med 176:415–426

    Article  CAS  Google Scholar 

  44. Neeser JR, Granato D, Rouvet M, Servin A, Teneberg S, Karlsson KA (2000) Lactobacillus johnsonii La1 shares carbohydrate-binding specificities with several enteropathogenic bacteria. Glycobiology 10:1193–1199

    Article  CAS  Google Scholar 

  45. Izquierdo E, Horvatovich P, Marchioni E, Aoude-Werner D, Sanz Y, Ennahar S (2009) 2-DE and MS analysis of key proteins in the adhesion of Lactobacillus plantarum, a first step toward early selection of probiotics based on bacterial biomarkers. Electrophoresis 30:949–956

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank the Department of Biotechnology, New Delhi, India, for financial support (grant number BT/PR-7496/PID/20/292/2006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamishraha Bagchi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 41 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhanani, A.S., Gaudana, S.B. & Bagchi, T. The ability of Lactobacillus adhesin EF-Tu to interfere with pathogen adhesion. Eur Food Res Technol 232, 777–785 (2011). https://doi.org/10.1007/s00217-011-1443-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-011-1443-7

Keywords

Navigation