Skip to main content

Advertisement

Log in

Oligonucleotide microarray chip for the quantification of MS2, ΦX174, and adenoviruses on the multiplex analysis platform MCR 3

Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Pathogenic viruses are emerging contaminants in water which should be analyzed for water safety to preserve public health. A strategy was developed to quantify RNA and DNA viruses in parallel on chemiluminescence flow-through oligonucleotide microarrays. In order to show the proof of principle, bacteriophage MS2, ΦX174, and the human pathogenic adenovirus type 2 (hAdV2) were analyzed in spiked tap water samples on the analysis platform MCR 3. The chemiluminescence microarray imaging unit was equipped with a Peltier heater for a controlled heating of the flow cell. The efficiency and selectivity of DNA hybridization could be increased resulting in higher signal intensities and lower cross-reactivities of polymerase chain reaction (PCR) products from other viruses. The total analysis time for DNA/RNA extraction, cDNA synthesis for RNA viruses, polymerase chain reaction, single-strand separation, and oligonucleotide microarray analysis was performed in 4–4.5 h. The parallel quantification was possible in a concentration range of 9.6 × 105–1.4 × 1010 genomic units (GU)/mL for bacteriophage MS2, 1.4 × 105–3.7 × 108 GU/mL for bacteriophage ΦX174, and 6.5 × 103–1.2 × 105 for hAdV2, respectively, by using a measuring temperature of 40 °C. Detection limits could be calculated to 6.6 × 105 GU/mL for MS2, 5.3 × 103 GU/mL for ΦX174, and 1.5 × 102 GU/mL for hAdV2, respectively. Real samples of surface water and treated wastewater were tested. Generally, found concentrations of hAdV2, bacteriophage MS2, and ΦX174 were at the detection limit. Nevertheless, bacteriophages could be identified with similar results by means of quantitative PCR and oligonucleotide microarray analysis on the MCR 3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig 5
Fig. 6

Similar content being viewed by others

References

  1. Fong T, Lipp EK (2005) Microbiol Mol Biol Rev 69:357–371

    Article  CAS  Google Scholar 

  2. Bosch A (1998) Int Microbiol 1:191–196

    CAS  Google Scholar 

  3. Fout GS, Martinson BC, Moyer MWN, Dahling DR (2003) Appl Environ Microbiol 69:3158–3164

    Article  CAS  Google Scholar 

  4. Lee S, Kim S (2002) Water Res 36:248–256

    Article  CAS  Google Scholar 

  5. Lodder WJ, de Roda Husman AM (2005) Appl Environ Microbiol 71:1453–1461

    Article  CAS  Google Scholar 

  6. Hamza IA, Jurzik L, Überla K, Wilhelm M (2011) Int J Hyg Environ Health 214:424–436

    Article  Google Scholar 

  7. Keswick BH, Satterwhite TK, Johnson PC, DuPont HL, Secor SL, Bitsura JA, Gary GW, Hoff JC (1985) Appl Environ Microbiol 50:261–264

    CAS  Google Scholar 

  8. Gerba CP, Gramos DM, Nwachuku N (2002) Appl Environ Microbiol 68:5167–5169

    Article  CAS  Google Scholar 

  9. Connelly JT, Baeumner AJ (2012) Anal Bioanal Chem 402:117–127

    Article  CAS  Google Scholar 

  10. Haas CN, Rose JB, Gerba C, Regli S (1993) Risk Anal 13:545–552

    Article  CAS  Google Scholar 

  11. Heller MJ (2002) Annu Rev Biomed Eng 4:129–153

    Article  CAS  Google Scholar 

  12. Pappaert K, Van Hummelen P, Vanderhoeven J, Baron GV, Desmet G (2003) Chem Eng Sci 58:4921–4930

    Article  CAS  Google Scholar 

  13. Donhauser SC, Niessner R, Seidel M (2009) Anal Sci 25:669–674

    Article  CAS  Google Scholar 

  14. Seidel M, Niessner R (2008) Anal Bioanal Chem 391:1521–1544

    Article  CAS  Google Scholar 

  15. Lehr HP, Reimann M, Brandenburg A, Sulz G, Klapproth H (2003) Anal Chem 75:2414–2420

    Article  CAS  Google Scholar 

  16. Brandstetter T, Böhmer S, Prucker O, Bissé E, zur Hausen A, Alt-Mörbe J, Rühe J (2009) J Virol Methods 163:40–48

    Article  Google Scholar 

  17. Tran PH, Peiffer DA, Shin Y, Meek LM, Brody JP, Cho KWY (2002) Nucleic Acids Res 30:e54

    Article  Google Scholar 

  18. Albers J, Grunwald T, Nebling E, Piechotta G, Hintsche R (2003) Anal Bioanal Chem 377:521–527

    Article  CAS  Google Scholar 

  19. Elsholz B, Nitsche A, Achenbach J, Ellerbrok H, Blohm L, Albers J, Pauli G, Hintsche R, Wörl R (2009) Biosens Bioelectron 24:1737–1743

    Article  CAS  Google Scholar 

  20. Roda A, Guardigli M, Michelini E, Mirasoli M, Pasini P (2003) Anal Chem 75:462–470

    Article  Google Scholar 

  21. Kloth K, Niessner R, Seidel M (2009) Biosens Bioelectron 24:2106–2112

    Article  CAS  Google Scholar 

  22. Kloth K, Rye-Johnsen M, Didier A, Dietrich R, Märtlbauer E, Niessner R, Seidel M (2009) Analyst 134:1433–1439

    Article  CAS  Google Scholar 

  23. Wutz K, Niessner R, Seidel M (2011) Microchim Acta 173:1–9

    Article  CAS  Google Scholar 

  24. Szkola A, Campbell K, Elliott CP, Niessner R, Seidel M (2013) Anal Chim Acta 797:211–218

    Article  Google Scholar 

  25. Huebner M, Wutz K, Szkola A, Niessner R, Seidel M (2013) Anal Sci 29:461–466

    Article  CAS  Google Scholar 

  26. Wutz K, Meyer VK, Wachek S, Krol P, Gareis M, Nölting C, Struck F, Soutschek E, Böcher O, Niessner R, Seidel M (2013) Anal Chem 85:5279–5285

    Article  CAS  Google Scholar 

  27. Donhauser SC, Niessner R, Seidel M (2011) Anal Chem 83:3153–3160

    Article  CAS  Google Scholar 

  28. Fish DJ, Horne MT, Brewood JP, Goodarzi JP, Alemayehu S, Bhandiwad A, Searles RP, Benight AS (2007) Nucleic Acids Res 35:7197–7208

    Article  CAS  Google Scholar 

  29. Bodrossy L, Sessitsch A (2004) Curr Opin Microbiol 7:245–254

    Article  CAS  Google Scholar 

  30. Feng J, Wang Y, Cao G, Hu S, Kuang X, Tang S, You S, Liu L (2013) Eur Food Res 236:1073–1083

    Article  CAS  Google Scholar 

  31. Ballarani A, Segata N, Huttenhower C, Jousson O (2013) PLoS ONE 8:e55764

    Article  Google Scholar 

  32. Wolter A, Niessner R, Seidel M (2007) Anal Chem 79:4529–4537

    Article  CAS  Google Scholar 

  33. Dreier J, Störmer M, Kleesiek K (2005) J Clin Microbiol 43:4551–4557

    Article  CAS  Google Scholar 

  34. Crews N, Wittwer C, Gale B (2008) Biomed Microdevices 10:187–195

    Article  CAS  Google Scholar 

  35. Heim A, Ebnet C, Harste G, Pring-Ǻkerblom P (2003) J Med Virol 70:228–239

    Article  CAS  Google Scholar 

  36. Katayama H, Shimasaki A, Ohgaki S (2002) Appl Environ Microbiol 68:1033–1039

    Article  CAS  Google Scholar 

  37. Vilaginès P, Sarrette B, Husson G, Vilaginès R (1993) Water Sci Technol 27:299–306

    Article  Google Scholar 

  38. Saiyed ZM, Telang SD, Ramchand CN (2003) Biomagn Res Technol 1:2

    Article  Google Scholar 

  39. Markham NR, Zuker M (2005) Nucleic Acids Res 33:577–581

    Article  Google Scholar 

  40. Markham NR, Zuker M (2008) In: Keith JM (ed) Bioinformatics, Volume II. Structure, function and applications. Humana, Totowa, pp 3–31

    Google Scholar 

  41. Johnstone RW, Andrew AM, Hogarth MP, Pietersz G, McKenzie IFC (1990) Mol Immunol 27:327–333

    Article  CAS  Google Scholar 

  42. Vermeer AWP, Bremer MGEG, Norde W (1998) Biochim Biophys Acta Gen Subj 1425:1–12

    Article  CAS  Google Scholar 

  43. Chattopadhyay K, Mazumdar M (2000) Biochemistry 39:263–270

    Article  CAS  Google Scholar 

  44. Cansiz S, Özen C, Bayrac C, Bayrac AT, Gül F, Kavruk M, Yilmaz R, Eyidogan F, Öktem HY (2012) Eur Food Res Technol 235:429–437

    Article  CAS  Google Scholar 

  45. Kuo DHW, Simmons FJ, Blair S, Hart E, Rose JB, Xagoraraki I (2010) Water Res 44:1520–1530

    Article  CAS  Google Scholar 

  46. Fong TT, Phanikumar MS, Xagoraraki I, Rose JB (2009) Appl Environ Microbiol 76:715–723

    Article  Google Scholar 

  47. Ikner LA, Gerba CP, Bright KR (2012) Food Environ Virol 4:41–67

    Article  Google Scholar 

  48. Abbaszadegan M, Huber MS, Gerba CP, Pepper IL (1993) Appl Environ Microbiol 59:1318–1324

    CAS  Google Scholar 

  49. Pei L, Rieger M, Lengger S, Ott S, Zawadsky C, Hartmann NM, Selinka HC, Tiehm A, Niessner R, Seidel M (2012) Environ Sci Technol 46:10073–10080

    CAS  Google Scholar 

  50. Lengger S, Niessner R, Seidel M (2012) Nachr Chemie 60:1208–1212

    Article  CAS  Google Scholar 

  51. WHO (2011) Guidelines for drinking water quality, 4th edn. World Health Organization, Geneva

    Google Scholar 

  52. Grabow WOK (2001) Water SA 28:251–266

    Google Scholar 

  53. Kundu A, McBride G, Wuertz S (2013) Water Res 47:6309–6325

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors like to thank the BMBF for financial support (project PATH2OGENSCAN, 02WU1142, 02WU1143, 02WU1144, 02WU1145) in the field of MCR 3 optimization. Especially we want to thank GWK Präzisionstechnik GmbH for their collaboration in the project and the supply of the MCR 3 research device for oligonucleotide microarray analysis. Also thanks to Huntsman Corporation (Rotterdam, the Netherlands) for the kindly provided free DAPEG samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Seidel.

Additional information

This paper is dedicated to Professor Günter Gauglitz on the occasion of his 70th birthday.

Published in the topical collection Multiplex Platforms in Diagnostics and Bioanalytics with guest editors Günter Peine and Günther Proll.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 206 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lengger, S., Otto, J., Elsässer, D. et al. Oligonucleotide microarray chip for the quantification of MS2, ΦX174, and adenoviruses on the multiplex analysis platform MCR 3. Anal Bioanal Chem 406, 3323–3334 (2014). https://doi.org/10.1007/s00216-014-7641-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-7641-y

Keywords

Navigation