Skip to main content
Log in

Phoxonic crystals—a new platform for chemical and biochemical sensors

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A new sensor platform is based on so-called phoxonic crystals. Phoxonic crystals are structures designed for simultaneous control of photon and phonon propagation and interaction. They are characterized by a periodic spatial modulation of the dielectric constant as well as elastic properties on a common wavelength scale. Multiple scattering of photons and phonons results in a band gap where propagation of both waves is prohibited. The existence of photonic and phononic band gaps opens up opportunities for novel devices and functional materials. The usage of defect modes is an advantageous concept for measurement. The defect also acts as point of measurement. We show theoretically that the properties of the defect mode can be tailored to provide very high sensitivity to optical and acoustic properties of matter confined within a defect cavity or surrounding the defect or being adsorbed at the cavity surface. In this paper, we introduce the sensor platform and analyze the key features of the sensor transduction scheme. Experimental investigations using a macroscopic device support the theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Yablonovitch E (1987) Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett 58:2059

    Article  CAS  Google Scholar 

  2. Lourtioz JM, Benisty H, Berger V, Gerard JM, Maystre D, Tchelnokov A (2008) Photonic crystals: towards nanoscale photonic devices. Springer, Berlin

    Google Scholar 

  3. Johnson SG, Fan S, Villeneuve PR, Joannopoulos J, Kolodziejski L (1999) Guided modes in photonic crystal slabs. Phys Rev B 60(8):5751–5758

    Article  CAS  Google Scholar 

  4. Sigalas MM, Economou EN (1992) Elastic and acoustic wave band structure. J Sound Vib 158:377–382

    Article  Google Scholar 

  5. Gorishnyy T, Ullal CK, Maldovan M, Fytas G, Thomas EL (2005) Hypersonic phononic crystals. Phys Rev Lett 94:115501

    Article  CAS  Google Scholar 

  6. Maldovan M, Thomas EL (2006) Simultaneous localization of photons and phonons in two-dimensional periodic structures. Appl Phys Lett 88(25):251907

    Article  Google Scholar 

  7. Sadat-Saleh S, Benchabane S, Baida FI, Bernal MP, Laude V (2009) Tailoring simultaneous photonic and phononic band gaps. J Appl Phys 106(7):074912

    Article  Google Scholar 

  8. Pennec Y, Djafari Rouhani B, El Boudouti EH, Li C, El Hassouani Y, Vasseur JO, Papanikolaou N, Benchabane S, Laude V, Martinez A (2010) Simultaneous existence of phononic and photonic band gaps in periodic crystal slabs. Opt Express 18(13):14301

    Article  CAS  Google Scholar 

  9. El Hassouani Y, Li C, Pennec Y, El Boudouti EH, Larabi H, Akjouj A, Bou Matar O, Laude V, Papanikolaou N, Martinez A, Djafari Rouhani B (2010) Dual phononic and photonic band gaps in a periodic array of pillars deposited on a thin plate. Phys Rev B 82:155405

    Article  Google Scholar 

  10. Rolland Q, Oudich M, El-Jallal S, Dupont S, Pennec Y, Gazalet J, Kastelik JC, Lévêque G, Djafari-Rouhani B (2012) Acousto-optic couplings in two-dimensional phoxonic crystal cavities. Appl Phys Lett 101:061109

    Article  Google Scholar 

  11. Laude V, Beugnot JC, Benchabane S, Pennec Y, Djafari-Rouhani B, Papanikolaou N, Escalante JM, Martinez A (2011) Simultaneous guidance of slow photons and slow acoustic phonons in silicon phoxonic crystal slabs. Opt Express 19:9690

    Article  CAS  Google Scholar 

  12. Hsiao FL, Hsieh CY, Hsieh HY, Chiu CC (2012) High-efficiency acousto-optical interaction in phoxonic nanobeam waveguide. Appl Phys Lett 100:171103

    Article  Google Scholar 

  13. Eichenfield M, Chan J, Camacho RM, Vahala KJ, Painter O (2009) Optomechanical crystals. Nature 462:78

    Article  CAS  Google Scholar 

  14. Gavartin E, Braive R, Sagnes I, Arcizet O, Beveratos A, Kippenberg TJ (2011) Optomechanical coupling in a two-dimensional photonic crystal defect cavity. Phys Rev Lett 106:203902

    Article  CAS  Google Scholar 

  15. Schirhagl R, Latif U, Podlipna D, Blumenstock H, Dickert FL (2012) Natural and biomimetic materials for the detection of insulin. Anal Chem 84(9):3908–3913

    Article  CAS  Google Scholar 

  16. Schirhagl R, Qian J, Dickert FL (2012) Immunosensing with artificial antibodies in organic solvents or complex matrices. Sensors Actuators B 173:585–590

    Article  CAS  Google Scholar 

  17. Mustafa G, Hussain M, Iqbal N, Dickert FL, Lieberzeit PA (2012) Quartz crystal microbalance sensor based on affinity interactions between organic thiols and molybdenum disulfide nanoparticles. Sensors Actuators B 162(1):63–67

    Article  CAS  Google Scholar 

  18. Yaqub S, Latif U, Dickert FL (2011) Plastic antibodies as chemical sensor material for atrazine detection. Sensors Actuators B 160(1):227–233

    Article  CAS  Google Scholar 

  19. Schirhagl R, Seifner A, Husain FT, Cichna-Markl M, Lieberzeit PA, Dickert FL (2010) Antibodies and their replicae in microfluidic sensor systems—label-free quality assessment in food chemistry and medicine. Sensor Letters 8(3):399–404

    Article  CAS  Google Scholar 

  20. Birnbaumer GM, Lieberzeit PA, Richter L, Schirhagl R, Milnera M, Dickert FL, Bailey A, Ertl P (2009) Detection of viruses with molecularly imprinted polymers integrated on a microfluidic biochip using contact-less dielectric microsensors. Lab on a Chip 9(24):3549–3556

    Article  CAS  Google Scholar 

  21. Lieberzeit PA, Dickert FL (2007) Sensor technology and its application in environmental analysis. Anal Bioanal Chem 387(1):237–247

    Article  CAS  Google Scholar 

  22. Feng PXL (2011) “Nanoscale electromechanical resonators and oscillators” Tutorial, IEEE International Frequency Control Symposium

  23. Holmes MJ, Parker NG, Povey WJW (2011) Temperature dependence of bulk viscosity in water using acoustic spectroscopy. J Phys Conf Series 269:012011

    Article  Google Scholar 

  24. Stevenson AC, Araya-Kleinsteuber B, Sethi RS, Mehta HM, Lowe CR (2003) The acoustic spectrophonometer: a novel bioanalytical technique based on multifrequency acoustic devices. Analyst 128(9):1175–1180

    Article  CAS  Google Scholar 

  25. Sheikh S, Blaszykowski C, Thompson M (2011) Label-free detection of HIV-2 antibodies in serum with an ultra-high frequency acoustic wave sensor. Talanta 85(1):816–819

    Article  CAS  Google Scholar 

  26. Qiu C, Liu Z, Mei J, Ke M (2005) The layer multiple-scattering method for calculating transmission coefficients of 2D phononic crystals. Solid State Commun 134:765–770

    Article  CAS  Google Scholar 

  27. Tanaka Y, Tomoyasu Y, Tamura I (2000) Band structures of acoustic waves in phononic lattices: two-dimensional composites with large acoustic mismatch. Phys Rev B 62:7387–7392

    Article  CAS  Google Scholar 

  28. Lucklum R, Li J (2009) Phononic crystals for liquid sensor applications. Meas Sci Technol 20:124014

    Article  Google Scholar 

  29. Lucklum R, Ke M, Zubtsov M (2012) Two-dimensional phononic crystal sensor based on a cavity mode. Sensors Actuators B 171–172:271–277

    Article  Google Scholar 

  30. Lucklum R, Zubtsov M, Kraych A, Pennec Y, Djafari-Rouhani B (2012) “Phoxonic Crystal Sensor”, SPIE Phontonics Europe

  31. Zubtsov M, Lucklum R (2010) A novel method for tuning the band gap structure of 2D phononic crystals. Proc IEEE Ultrason Symp: 515–518

  32. Herráez JV, Belda R (2006) Refractive indices, densities and excess molar volumes of monoalcohols + water. J Solut Chem 35:1315–1328

    Article  Google Scholar 

  33. Kuhnkies R, Schaaffs W (1963) Acustica 13:407

    CAS  Google Scholar 

  34. Scullion MG, Krauss TF, Di Falco A (2011) High efficiency interface for coupling into slotted photonic crystal waveguides. IEEE Phot J 3:203–208

    Article  Google Scholar 

  35. Oseev A, Zubtsov M, Lucklum R (2013) Gasoline properties determination with phononic crystal cavity sensor. Sensor Actuators B (in press)

  36. Lucklum R, Zubtsov M, Ke M (2012) Liquid sensor utilizing a regular phononic crystal with normal incidence of sound. Transact Ultrason, Ferroel, Freq Contr 59:463–471

    Article  Google Scholar 

  37. Lide DR (ed) CRC Handbook Chem Phys 84th ed., CRC Press, Boca Raton, FL, 6–166, 6–165, 6–169, 2003–2004

  38. Zubtsov M, Lucklum R, Ke M, Oseev A, Grundmann R, Henning B, Hempel U (2012) 2D phononic crystal sensor with normal incidence of sound. Sensors and Actuators A 186:118–124

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been performed as part of Future and Emerging Technologies–Open project, Tailphox, supported by the European Community under grant 233883. We explicitly acknowledge the support of Alejandro Martinez from Universidad Politecnica de Valencia as well as Yan Pennec and Bahram Djafari-Rouhani, Université de Lille 1. Further support by the German Research Foundation under grant LU 605–12 is gratefully acknowledged. The authors specifically want to thank Abbas Omar, Otto-von-Guericke-University Magdeburg, who gave us access to the microwave laboratory and supported the work with helpful discussions. We also wish to thank Rainer Schulze Höing, Mauritz GmbH + Co.KG, for providing the microwave sample and Santer zur Horst-Meyer, Sonotec GmbH, and Gerhard Mook, Otto-von-Guericke-University, Magdeburg, for providing specific low-frequency ultrasonic transducers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Lucklum.

Additional information

This paper is dedicated to Professor Franz Dickert on the occasion of his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lucklum, R., Zubtsov, M. & Oseev, A. Phoxonic crystals—a new platform for chemical and biochemical sensors. Anal Bioanal Chem 405, 6497–6509 (2013). https://doi.org/10.1007/s00216-013-7093-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7093-9

Keywords

Navigation