Skip to main content
Log in

Copper and tin isotopic analysis of ancient bronzes for archaeological investigation: development and validation of a suitable analytical methodology

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Although in many cases Pb isotopic analysis can be relied on for provenance determination of ancient bronzes, sometimes the use of “non-traditional” isotopic systems, such as those of Cu and Sn, is required. The work reported on in this paper aimed at revising the methodology for Cu and Sn isotope ratio measurements in archaeological bronzes via optimization of the analytical procedures in terms of sample pre-treatment, measurement protocol, precision, and analytical uncertainty. For Cu isotopic analysis, both Zn and Ni were investigated for their merit as internal standard (IS) relied on for mass bias correction. The use of Ni as IS seems to be the most robust approach as Ni is less prone to contamination, has a lower abundance in bronzes and an ionization potential similar to that of Cu, and provides slightly better reproducibility values when applied to NIST SRM 976 Cu isotopic reference material. The possibility of carrying out direct isotopic analysis without prior Cu isolation (with AG-MP-1 anion exchange resin) was investigated by analysis of CRM IARM 91D bronze reference material, synthetic solutions, and archaeological bronzes. Both procedures (Cu isolation/no Cu isolation) provide similar δ 65Cu results with similar uncertainty budgets in all cases (±0.02–0.04 per mil in delta units, k = 2, n = 4). Direct isotopic analysis of Cu therefore seems feasible, without evidence of spectral interference or matrix-induced effect on the extent of mass bias. For Sn, a separation protocol relying on TRU-Spec anion exchange resin was optimized, providing a recovery close to 100 % without on-column fractionation. Cu was recovered quantitatively together with the bronze matrix with this isolation protocol. Isotopic analysis of this Cu fraction provides δ 65Cu results similar to those obtained upon isolation using AG-MP-1 resin. This means that Cu and Sn isotopic analysis of bronze alloys can therefore be carried out after a single chromatographic separation using TRU-Spec resin. Tin isotopic analysis was performed relying on Sb as an internal standard used for mass bias correction. The reproducibility over a period of 1 month (n = 42) for the mass bias-corrected Sn isotope ratios is in the range of 0.06–0.16 per mil (2 s), for all the ratios monitored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Vanhaecke F, Degryse P (2012) Isotopic analysis. Fundamentals and applications using ICP-MS. Wiley-VCH, Weinheim

    Book  Google Scholar 

  2. Vanhaecke F, Balcaen L, Malinovsky D (2009) Use of single-collector and multi-collector ICP-mass spectrometry for isotopic analysis. J Anal At Spectrom 24:863–886

    Article  CAS  Google Scholar 

  3. Balcaen L, Moens L, Vanhaecke F (2010) Determination of isotope ratios of metals (and metalloids) by means of inductively coupled plasma-mass spectrometry for provenancing purposes—a review. Spectrochim Acta B 65:769–786

    Article  Google Scholar 

  4. Gale NH, Stos-Gale ZA (1982) Bronze Age copper sources in the Mediterranean—a new approach. Science 216:11–19

    Article  CAS  Google Scholar 

  5. Zhu XK, O’Nions RK, Guo Y, Belshaw NS, Rickard D (2000) Determination of natural Cu-isotope variation by plasma source mass spectrometry: implications for use as geochemical tracers. Chem Geol 163:139–149

    Article  CAS  Google Scholar 

  6. Albarède F, Beard B (2004) Analytical method for non-traditional isotopes. In: Johnson CM, Beard BL, Albarède F (eds) Rewies in mineralogy and geochemistry, vol. 55, geochemistry of non-traditional stable isotopes. Mineralogical Society of America, Washington

    Google Scholar 

  7. Haustein M, Gillis C, Pernicka E (2010) Tin isotopic analysis—a new method for solving old questions. Archaeometry 52:816–832

    Article  CAS  Google Scholar 

  8. Gale NH, Woodhead AP, Stos-Gale ZA, Walder A, Bowen A (1999) Natural variations detected in the isotopic composition of copper: possible applications to archaeology and geochemistry. Int J Mass Spectrom 184:1–9

    Article  CAS  Google Scholar 

  9. Rehener T, Pernicka E (2008) Coins, artefacts and isotopes—archaeometallurgy and archaeometry. Archaeometry 50:232–248

    Article  Google Scholar 

  10. Radivojevic M, Rehren T, Pernicka E, Silvar D, Brauns M, Boric D (2010) On the origin of extractive metallurgy: new evidence from Europe. J Archaeol Sci 37:2775–2787

    Article  Google Scholar 

  11. Resano M, Marzo MP, Alloza R, Saénz C, Vanhaecke, Yang L, Willie S, Sturgeon RE (2010) Laser ablation single-collector inductively coupled plasma mass spectrometry for lead isotopic analysis to investigate evolution of the Bilbilis mint. Anal Chim Acta 677:55–63

    Article  CAS  Google Scholar 

  12. Cattin F, Guénette-Beck B, Besse M, Serneels V (2009) Lead isotopes and archaeometallurgy. Archaeol Anthtopol Sci 1:137–148

    Article  Google Scholar 

  13. Resano M, Marzo P, Pérez-Arantegui J, Aramendía M, Cloquet C, Vanhaecke F (2008) Laser ablation-inductively coupled plasma-dynamic reaction cell-mass spectrometry for the determination of lead isotope ratios in ancient glazed ceramics for discriminating purposes. J Anal At Spectrom 23:1182–1191

    Article  CAS  Google Scholar 

  14. Thibodeau AM, Chesley JT, Ruiz J (2012) Lead isotope analysis as a new method for identifying material culture belonging to the Vázquez de Coronado expedition. J Archaeol Sci 39:58–66

    Article  Google Scholar 

  15. Attanasio D, Bultrini G, Ingo GM (2001) The possibility of provenancing a series of bronze Punic coins found at Tharros (Western Sardinia) using the literature lead isotope database. Archaeometry 43:529–547

    Article  CAS  Google Scholar 

  16. Durali-Müller S (2005) Roman lead and copper mining in Germany—their origin and development through time, deduced from lead and copper isotope provenance studies. http://www.mineralogie.uni-frankfurt.de/petrologie-geochemie/forschung/dissertationen/diss0106/index.html

  17. Marzo P, Laborda F, Pérez-Arantegui J (2007) A simple method for the determination of lead isotope ratios in ancient glazed ceramics using inductively coupled plasma: quadrupole mass spectrometry. At Spectrosc 28:195–201

    CAS  Google Scholar 

  18. Stos-Gale ZA (1995) Isotope archaeology—a review. In: Beavis J, Barker K (eds) Science and site: evaluation and conservation. Bournemouth University School of Conservation Sciences, Dorset

    Google Scholar 

  19. Gale N (2001) Archaeology, science-based archaeology and the Mediterranean Bronze Age metals trade: a contribution to the debate. Eur J Archaeol 4:113–130

    Article  Google Scholar 

  20. Wilson L, Pollard AM (2001) The provenance hypothesis. In: Brothwell DR, Pollard AM (eds) Handbook of archaeological sciences. Wiley & Sons, Chichester

    Google Scholar 

  21. De Wannemacker G, Vanhaecke F, Moens L, Van Mele A, Thoen H (2000) Lead isotopic and elemental analysis of copper alloy statuettes by double focusing sector field ICP mass spectrometry. A Anal At Spectrom 15:323–327

    Article  Google Scholar 

  22. Begemann F, Schmitt-Strecker, Pernicka E, Lo Schiavo F (2001) Chemical composition and lead isotopy of copper and bronze from Neuragic Sardinia. Eur J Archaeol 4:43–85

    Article  Google Scholar 

  23. Desaulty AM, Telouk P, Albalat E, Albarède F (2011) Isotopic Ag-Cu-Pb record of silver circulation through 16th–18th century Spain. PNAS 108:9002–9900

    Article  CAS  Google Scholar 

  24. Fortunato G, Ritter A, Fabian D (2005) Old masters’ lead white pigments: investigation of paintings from the 16th to the 17th century using high precision lead isotope abundance ratios. Analyst 130:898–906

    Article  CAS  Google Scholar 

  25. Klein S, Brey GP, Durali-Müller S, Lahaye Y (2010) Characterization of raw metal sources used for the production of copper and copper-based objects with copper isotopes. Archaeol Anthropol Sci 2:45–56

    Article  Google Scholar 

  26. Hull S, Fayek M, Mathien FJ, Shelley P, Durand KR (2008) A new approach to determining the geological provenance of turquoise artifacts using hydrogen and copper stable isotopes. J Archaeol Sci 35:1355–1369

    Article  Google Scholar 

  27. Klein S, Lahaye Y, Brey GP (2004) The Early Roman Imperial AES coinage II: tracing the copper sources by analysis of lead and copper isotopes-copper coins of Augustus and Tiberius. Archaeometry 46:469–480

    Article  CAS  Google Scholar 

  28. Mathur R, Titley S, Hart G, Wilson M, Davignon M, Zlatos C (2009) The history of the United States cent revealed through copper isotope fractionation. J Archaeol Sci 36:430–433

    Article  Google Scholar 

  29. Begemann F, Kallas K, Schmitt-Strecker S, Pernicka E (1999) In: Hauptmann A, Pernicka E, Rehren T, Yalcin Ü (eds) The beginnings of metallurgy. Der Anschnitt, Beiheft, Deutsches Bergbau-Museum, Bochum

    Google Scholar 

  30. Klein S, Doumergue C, Lahaye Y, Brey GP, Von Kaenel HM (2009) The lead and copper isotopic composition of copper ores from the Sierra Morena (Spain)—Análisis de los isotopos de plomo y de cobre de los minerales de cobre de la Sierra Morena (Spain) por MC-ICP-MS. J Iberian Geol 35:59–68

    Google Scholar 

  31. Gale NH (1997) The isotopic composition of tin in some ancient metals and the recycling problem in metal provenancing. Archaeometry 39:71–82

    Article  CAS  Google Scholar 

  32. Huff EA, Huff DR (1993) TRU-Spec and RE-Spec chromatography: basic studies and applications. in 34th ORNL/DOE Conference on Analytical Chemistry in Energy Technology, Gatlinburg, Tennessee

  33. Maréchal CN, Télouk P, Albarède F (1999) Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry. Chem Geol 156:251–273

    Article  Google Scholar 

  34. Van Heghe L, Engström E, Rodushkin I, Cloquet C, Vanhaecke F (2012) Isotopic analysis of the metabolically relevant transition metals Cu, Fe and Zn in human blood from vegetarians and omnivores using multi-collector ICP–mass spectrometry. J Anal At Spectrom 27:1327–1334

    Article  Google Scholar 

  35. Krachler M, Rausch N, Feuerbacher H, Kelmens P (2005) A new HF-resistant tandem spray chamber for improved determination of trace elements and Pb isotopes using inductively coupled plasma-mass spectrometry. Spectrochim Acta B 60:865–869

    Article  Google Scholar 

  36. Epov VN, Malinovskiy D, Vanhaecke F, Bégué D, Donard OFX (2011) Modern mass spectrometry for studying mass-independent fractionation of heavy stable isotopes in environmental and biological sciences. J Anal At Spectrom 26:1142–1152

    Article  CAS  Google Scholar 

  37. Malinovsky D, Moens L, Vanahaeke F (2009) Isotopic fractionation of Sn during methylation and demethylation reactions in aqueous solution. Environ Sci Technol 43:4399–4404

    Article  Google Scholar 

  38. Baxter DC, Rodushkin I, Engström E, Malinovsky D (2006) Revised exponential model form mass bias correction using an internal standard for isotope ratio measurements by multicollector inductively coupled plasma mass spectrometry. J Anal At Spectrom 21:427–430

    Article  CAS  Google Scholar 

  39. De Laeter JR, Bohlke JK, De Bievre P, Hidaka H, Peiser HS, Rosman KJR, Taylor PDP (2003) Atomic weights of the elements: Review 2000. Pure Appl Chem 75:683–800

    Article  Google Scholar 

  40. Yang L (2009) Accurate and precise determination of isotopic ratio by MC-ICP-MS: a review. Mass Spectrom Rev 28:990–1011

    Article  CAS  Google Scholar 

  41. Meija J, Yang L, Mester Z, Sturgeon R (2012) Correction of instrumental mass discrimination for isotope ratio determination with multi-collector inductively coupled plasma mass spectrometry in isotopic analysis. Fundamentals and applications using ICP-MS. Wiley-VCH, Weinheim

    Google Scholar 

  42. Moeller K, Schoenberg R, Pedersen RB, Weiss D, Dong S (2012) Calibration of the new certified reference materials ERM-AE633 and ERM-AE647 for copper and IRMM-3702 for zinc isotope amount ratio determinations. Geost Geoanal Res 35:177–199

    Article  Google Scholar 

  43. Mason TFD, Weiss DJ, Horstwood M, Parrish RR, Russell SS, Mullane E, Coles BJ (2004) High-precision Cu and Zn isotope analysis by plasma source mass spectrometry part 1. Spectral interferences and their correction. J Anal At Spectrom 19:209–217

    Article  CAS  Google Scholar 

  44. Mason TFD, Weiss DJ, Horstwood M, Parrish RR, Russell SS, Mullane E, Coles BJ (2004) High-precision Cu and Zn isotope analysis by plasma source mass spectrometry part 2. Correcting for mass discrimination effects. J Anal At Spectrom 19:218–226

    Article  CAS  Google Scholar 

  45. Archer C, Vance D (2004) Mass discrimination correction in multiple-collector plasma source mass spectrometry: an example using Cu and Zn isotopes. J Anal At Spectrom 19:656–665

    Article  CAS  Google Scholar 

  46. Marthur R, Titley S, Barra F, Brantley S, Wilson M, Phillips A, Munizaga V, Maksaev V, Vervoort J, Hart G (2009) Exploration potential of Cu isotope fractionation in porphyry copper deposits. J Geochem Explor 102:1–6

    Article  Google Scholar 

  47. Borrok DM, Wanty RB, Ridley WI, Wolf R, Lamothe RJ, Adams M (2007) Separation of copper, iron, and zinc from complex aqueous solutions for isotopic measurement. Chem Geol 242:400–414

    Article  CAS  Google Scholar 

  48. Chapman B, Mason TFD, Weiss DJ, Coles BJ, Wilkinson JJ (2005) Chemical separation and isotopic variations of Cu and Zn from five geological reference materials. Geost Geoanal Res 30:5–16

    Article  Google Scholar 

  49. Markl G, Lahaye Y, Schwinn G (2006) Copper isotopes as monitors of redox processes in hydrothermal mineralization. Geochim Cosmochim Acta 70:4215–4225

    Article  CAS  Google Scholar 

  50. Li W, Jackson SE, Pearson NJ, Alard O, Chappell BW (2009) The Cu isotopic signature of granites from the Lachlan Fold Belt, SE Australia. Chem Geol 258:38–49

    Article  CAS  Google Scholar 

  51. Asael D, Matthews A, Bar-Matthews M, Halicz L (2009) Copper isotope fractionation in sedimentary copper mineralization (Timna Valley, Israel). Chem Geol 262:147–158

    Article  CAS  Google Scholar 

  52. Larner F, Rehkämper M, Coles BJ, Kreissig K, Weiss DJ, Sampson B, Unsworth C, Strekopytov S (2011) A new separation procedure for Cu prior to stable isotope analysis by MC-ICP-MS. J Anal At Spectrom 26:1627–1632

    Article  CAS  Google Scholar 

  53. Ehrlich S, Butler I, Halicz L, Rickard D, Oldroyd A, Matthews A (2004) Experimental study of the copper isotope fractionation between aqueous Cu (II) and covellite CuS. Chem Geol 209:259–269

    Article  CAS  Google Scholar 

  54. Ehrlich S, Ben-Dor L, Halicz L (2004) Precise isotope ratio measurement by multi collector-ICP-MS without matrix separation. Can J Anal Sci Spetrosc 49:136–147

    CAS  Google Scholar 

  55. Clayton RE, Andersson P, Gale NH, Gillis C, Whitehouse M (2002) Precise determination of the isotopic composition of tin using MC–ICP–MS. J Anal At Spectrom 17:1248–1256

    Article  CAS  Google Scholar 

  56. Ikerata K, Notsu K, Hirata T (2008) In situ determination of Cu isotope ratios in copper-rich materials by NIR femtosecond LA-MC-ICP-MS. J Anal At Spectrom 23:1003–1008

    Article  Google Scholar 

  57. Maréchal CN, Albarède F (2002) Ion-exchange fractionation of copper and zinc isotopes. Geochim Cosmochim Acta 66:1499–1509

    Article  Google Scholar 

  58. Haest M, Muchez P, Petit JCJ, Vanhaecke F (2009) Cu isotope ratio variations in the Dikulushi Cu-Ag deposit, DRC: of primary origin or induced by supergene reworking? Econ Geol 104:1055–1064

    Article  CAS  Google Scholar 

  59. Larson PB, Maher K, Ramos FC, Chang Z, Gaspar M, Meinert LD (2003) Copper isotope ratios in magmatic and hydrothermal ore-forming environments. Chem Geol 201:337–350

    Article  CAS  Google Scholar 

  60. Magnusson B, Naykki T, Hovind H, Krysell M (2003) Handbook for calculation of measurement uncertainty, 2nd edn. Nordtest, Espoo

    Google Scholar 

  61. De Laeter JR, Jeffery PM (1965) The isotopic composition of terrestrial and meteoritic tin. J Geophys Res 12:2895–2903

    Article  Google Scholar 

  62. De Laeter JR, Jeffery PM (1967) Tin: its isotopic and elemental abundance. Geochim Cosmochim Acta 31:969–985

    Article  Google Scholar 

  63. De Laeter JR, McCulloch MT, Rosman KJR (1974) Mass spectrometric isotope dilution analyses of tin in stony meteorites and standard rocks. Earth Planet Sci Lett 22:226–232

    Article  Google Scholar 

  64. Rosman KJR, Loss RD, De Laeter JR (1984) The isotopic composition of tin. Int J Mass Spectrom 56:281–291

    Article  CAS  Google Scholar 

  65. McNaughton NJ, Rosman KJR (1991) Tin isotopic fractionation in terrestrial cassiterites. Geochem Cosmochem Acta 55:499–504

    Article  CAS  Google Scholar 

  66. Yi W, Halliday AN, Lee DC, Christensen JN (1995) Indium and tin in basalts, sulfides, and the mantle. Geochim Cosmochim Acta 59:5081–5090

    Article  CAS  Google Scholar 

  67. Hernández C, Fernández M, Quejido AJ, Sánchez DM, Morante R, Martín R (2006) Isotope dilution-thermal ionization mass spectrometry for tin in a fly ash material. Anal Chim Acta 571:279–287

    Article  Google Scholar 

  68. Patton TL, Penrose WR (1989) Fission product tin in sediments. J Environ Radioact 10:201–211

    Article  CAS  Google Scholar 

  69. Gale NH (1997) The isotopic composition of tin in some ancient metals and the recycling problem in metal provenancing. Archaeometry 39:31–38

    Google Scholar 

Download references

Acknowledgments

R. Alloza and M. P. Marzo are kindly acknowledged for providing access to the samples investigated in this work. M.A. acknowledges the Flemish Research Foundation (FWO) for her postdoctoral grant. F.V. acknowledges the FWO for financial support under the form of a research project (G002111N). M.R. acknowledges the Spanish Ministry of Science and Innovation (Project CTQ2009-08606). F.V. and M.R. acknowledge the Special Research Foundation (BOF) of Ghent University for financial support of their bilateral cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Vanhaecke.

Additional information

Published in the topical collection Isotope Ratio Measurements: New Developments and Applications with guest editors Klaus G. Heumann and Torsten C. Schmidt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 95 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balliana, E., Aramendía, M., Resano, M. et al. Copper and tin isotopic analysis of ancient bronzes for archaeological investigation: development and validation of a suitable analytical methodology. Anal Bioanal Chem 405, 2973–2986 (2013). https://doi.org/10.1007/s00216-012-6542-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6542-1

Keywords

Navigation