Skip to main content
Log in

Tunable fragmentation of organic molecules in laser ablation glow discharge time-of-flight mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A DC-pulsed glow discharge (GD) has distinct temporal regimes which are characterized by “softer” or “harder” ionization of analytes introduced into the discharge. It is thus possible to obtain both molecular weight and structural fragment information from the same spectra. In order to extend the capabilities of this technique a laser ablation (LA) sampling system was coupled to a DC-pulsed GD and to a time-of-flight (TOF) mass spectrometer (MS) for characterizing organic samples such as oleic acid, reserpine, two different peptides, and a polymer. Both hard and soft ionization regimes were studied. These LAGD-TOFMS results were compared to matrix-assisted laser desorption ionization (MALDI) spectra using the same compounds (i.e., analytes, concentration, and matrix). It was found that LAGD offers tunable ionization and provides a reduced matrix dependence. However, the sensitivity achieved by the prototype LAGD-TOFMS was significantly lower when compared with commercially available MALDI-TOFMS instrumentation. Since LAGD-TOFMS is rather new, some technical details to increase its sensitivity are discussed.

Schematics of molecular and structural information of oleic acid molecule during the different temporal regimes of a pulsed GD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Krull IS (1991) Trace metal analysis and speciation. Elsevier, New York

    Google Scholar 

  2. Sanz-Medel A (1998) Spectrochim Acta B 53:197–211

    Article  Google Scholar 

  3. Ng JC, Johnson D, Imray P, Chiswell B, Moore MR (1998) Analyst 23:929–933

    Article  Google Scholar 

  4. Gordon BM, Jones KW (1991) In: Subramanian KS, Iyengar GV, Okamoto K (eds) Biological trace element research, ACS Symposium Serie, Vol. 445, American Chemical Society, Washington, DC

  5. Caruso JA, Wuilloud RG, Altamirano JC, Harris WR (2006) J Toxicol Environ Health 9:41–61

    CAS  Google Scholar 

  6. Waddell R, Lewis C, Hang W, Hassell C, Majidi V (2005) Appl Spectrosc 40:33–69

    Article  CAS  Google Scholar 

  7. Cristoni S, Bernardi LR (2004) Expert Rev Proteomics 1:469–483

    Article  CAS  Google Scholar 

  8. Siuzdak G (1994) Proc Natl Acad Sci USA 91:11290–11297

    Article  CAS  Google Scholar 

  9. Ray SJ, Andrade F, Gamez G, McClenathan D, Rogers D, Schilling G, Wetzel W, Hieftje GM (2004) J Chromatogr A 1050:3–34

    CAS  Google Scholar 

  10. Sola-Vazquez A, Costa-Fernandez JM, Pereiro M, Sanz-Medel A (2011) Analyst 136:246–256

    Article  CAS  Google Scholar 

  11. Jakubowski N, Dorka R, Steers E, Tempez A (2007) J Anal Atom Spectrom 22:722–735

    Article  CAS  Google Scholar 

  12. Martin A, Pereiro R, Bordel N, Sanz-Medel A (2007) J Anal Atom Spectrom 22:1179–1183

    Article  CAS  Google Scholar 

  13. Jackson GP, Lewis CL, Doorn SK, Majidi V, King FL (2001) Spectrochim Acta B 56:2449–2464

    Article  Google Scholar 

  14. Yang CL, Ingeneri K, Harrison WW (1999) J Anal Atom Spectrom 14:693–698

    Article  CAS  Google Scholar 

  15. Pan CK, King FL (1993) J Am Soc Mass Spectrom 4:727–732

    Article  CAS  Google Scholar 

  16. Majidi V, Moser M, Lewis C, Hang W, King FL (2000) J Anal Atom Spectrom 15:19–25

    Article  CAS  Google Scholar 

  17. Steiner RE, Lewis CL, Majidi V (1999) J Anal Atom Spectrom 14:1537–1541

    Article  CAS  Google Scholar 

  18. Lewis CL, Moser M, Dale DE, Hang W, Hassell C, King FL, Majidi V (2003) Anal Chem 75:1983–1996

    Article  CAS  Google Scholar 

  19. Fliegel D, Fuhrer K, Gonin M, Günther D (2006) Anal Bioanal Chem 386:169–179

    Article  CAS  Google Scholar 

  20. Tarik M, Günther D (2010) J Anal Atom Spectrom 25:1416–1423

    Article  CAS  Google Scholar 

  21. Robertson-Honecker JN, Zhang N, Pavkovichab A, King FL (2008) J Anal Atom Spectrom 23:1508–1517

    Article  CAS  Google Scholar 

  22. Zhang N, King FL (2009) J Anal Atom Spectrom 24:1489–1497

    Article  CAS  Google Scholar 

  23. Belkin M, Olson LK, Caruso JA (1997) J Anal Atom Spectrom 12:1255–1261

    Article  CAS  Google Scholar 

  24. Gibeau TE, Marcus RK (2000) Anal Chem 72:3833–3840

    Article  CAS  Google Scholar 

  25. Dreisewerd K (2003) Chem. Rev 103:395–425

    CAS  Google Scholar 

  26. Knochenmuss R (2006) Analyst 131:966–986

    Article  CAS  Google Scholar 

  27. Tarik M, Lotito G, Whitby JA, Koch J, Fuhrer K, Gonin M, Michler J, Bolli JL, Günther D (2009) Spectrochim Acta B 64:262–270

    Article  Google Scholar 

  28. Hidaka H, Hanyu N, Sugano M, Kawasaki K, Yamauchi K, Katsuyama T (2007) Ann Clin Lab Sci 37:213–221

    CAS  Google Scholar 

  29. Kinumi T, Saisu T, Takayama M, Niwa H (2000) J Mass Spectrom 35:417–422

    Article  CAS  Google Scholar 

  30. Shroff R, Svatos A (2009) Rapid Commun Mass Spectrom 23:2380–2382

    Article  CAS  Google Scholar 

  31. Schaiberger AM, Moss JA (2008) J Am Soc Mass Spectrom 19:614–619

    Article  CAS  Google Scholar 

  32. Schiller J, Süss R, Fuchs B, Müller M, Petkovic M, Zschörnig O, Waschipky H (2007) Eur Biophys J 36:517–527

    Article  CAS  Google Scholar 

  33. NIST Chemistry WebBook. Available at http://webbook.nist.gov/chemistry/ Accessed 19 July 2011

  34. Ratliff P, Harrison WW (1995) Appl Spectrosc 49:863–871

    Article  CAS  Google Scholar 

  35. Ratliff P, Harrison WW (1994) Spectrochim Acta B 49:1747–1757

    Article  Google Scholar 

  36. McCombie G, Knochenmuss R (2004) Anal Chem 76:4990–4997

    Article  CAS  Google Scholar 

  37. Gusev A, Wilkinson W, Proctor A, Hercules D (1995) Anal Chem 67:1034–1041

    Article  CAS  Google Scholar 

  38. Vorm O, Roepstorff P, Mann M (1994) Anal Chem 66:3281–3287

    Article  CAS  Google Scholar 

  39. Cohen S, Chait B (1996) Anal Chem 68:31–37

    Article  CAS  Google Scholar 

  40. Gogichaeva NV, Williams T, Alterman MA (2007) J Am Soc Mass Spectrom 18:279–284

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the European Community for financial support through GLADNET, a Marie Curie-RTN within the FP 6, and TOFWERK AG for providing the TOF instrument. The authors also would like to thank Dr. R. Knochenmuss for the discussion of the results, and L. Bertschi (MS service, D-CHAB) for the MALDI measurements. We also like to thank H. Longerich and two anonymous reviewers for critical and constructive comments which helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Günther.

Additional information

Published in the special issue Analytical Sciences in Switzerland with guest editors P. Dittrich, D. Günther, G. Hopfgartner, and R. Zenobi.

Appendix A

Appendix A

A.1 Chemical structures of the compounds

Here below (Fig. 12) are the chemical structures of the organic molecules used in this study. These structure’s formulas were produced using Symyx Draw 4.0.

Fig. 12
figure 12

Structural formulas of the analytes measured

A.2 MALDI spectrum of CHCA and oleic acid

A mass spectrum measured with MALDI concerning CHCA alone and mixed with oleic acid is in Fig. 13.

Fig. 13
figure 13

Full mass spectra of oleic acid in CHCA (oleic acid and CHCA) and of the matrix alone (CHCA pure)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lotito, G., Günther, D. Tunable fragmentation of organic molecules in laser ablation glow discharge time-of-flight mass spectrometry. Anal Bioanal Chem 402, 2565–2576 (2012). https://doi.org/10.1007/s00216-011-5498-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5498-x

Keywords

Navigation