, Volume 400, Issue 10, pp 3331-3340
Date: 05 Apr 2011

Laser-induced breakdown spectroscopy for polymer identification

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

This study aims at differentiating several organic materials, particularly polymers, by laser induced breakdown spectroscopy. The goal is to apply this technique to the fields of polymer recycling and cultural heritage conservation. We worked with some usual polymers families: polyethylene (PE), polypropylene (PP), polyoxymethylene, (POM), poly(vinyl chloride), polytetrafluoroethylene, polyoxyethylene (POE), and polyamide for the aliphatic ones, and poly(butylene terephthalate), acrylonitrile–butadiene–styrene, polystyrene, and polycarbonate for the aromatic ones. The fourth harmonic of a Nd:YAG laser (266 nm) in ambient air at atmospheric pressure was used. A careful analysis of the C2 Swan system (0,0) band in polymers containing no C–C (POM), few C–C (POE), or aromatic C–C linkages led us to the conclusion that the C2 signal might be native, i.e., the result of direct ablation from the sample. With use of these results, aliphatic and aromatic polymers could be differentiated. Further data treatments, such as properly chosen line ratios, principal component analysis, and partial least squares regression, were evaluated. It was shown that many polymers could be separated, including PE and PP, despite their similar chemical structures.

Figure

LIBS analysis for cultural heritage conservation

Published in the special issue Laser-Induced Breakdown Spectroscopy with Guest Editors Jagdish P. Singh, Jose Almirall, Mohamad Sabsabi, and Andrzej Miziolek.