Analytical and Bioanalytical Chemistry

, Volume 399, Issue 3, pp 1117–1125

Compact, cost-efficient microfluidics-based stopped-flow device

Authors

  • Regina Bleul
    • Institut für Mikrotechnik Mainz GmbH (IMM)
    • Hochschule Darmstadt
    • Institut für Mikrotechnik Mainz GmbH (IMM)
  • Julian Höth
    • Institut für Mikrotechnik Mainz GmbH (IMM)
  • Nico Scharpfenecker
    • Institut für Mikrotechnik Mainz GmbH (IMM)
  • Ines Frese
    • Institut für Mikrotechnik Mainz GmbH (IMM)
  • Dominik Düchs
    • Institut für Mikrotechnik Mainz GmbH (IMM)
  • Sabine Brunklaus
    • Institut für Mikrotechnik Mainz GmbH (IMM)
  • Thomas E. Hansen-Hagge
    • Institut für Mikrotechnik Mainz GmbH (IMM)
  • Franz-Josef Meyer-Almes
    • Hochschule Darmstadt
  • Klaus S. Drese
    • Institut für Mikrotechnik Mainz GmbH (IMM)
Original Paper

DOI: 10.1007/s00216-010-4446-5

Cite this article as:
Bleul, R., Ritzi-Lehnert, M., Höth, J. et al. Anal Bioanal Chem (2011) 399: 1117. doi:10.1007/s00216-010-4446-5

Abstract

Stopped-flow technology is frequently used to monitor rapid (bio)chemical reactions with high temporal resolution, e.g., in dynamic investigations of enzyme reactions, protein interactions, or molecular transport mechanisms. However, conventional stopped-flow devices are often overly complex, voluminous, or costly. Moreover, excessive amounts of sample are often wasted owing to inefficient designs. To address these shortcomings, we propose a stopped-flow system based on microfluidic design principles. Our simple and cost-efficient approach offers distinct advantages over existing technology. In particular, the use of injection-molded disposable microfluidic chips minimizes required sample volumes and associated costs, simplifies handling, and prevents adverse cross-contamination effects. The cost of the system developed is reduced by an order of magnitude compared with the cost of commercial systems. The system contains a high-precision valve system for fluid control and features automated data acquisition capability with high temporal resolution. Analyses with two well-established reaction kinetics yielded a dead time of approximately 8-9 ms.

Keywords

Stopped flowMicrofluidicsLow sample amountsShort dead time

Copyright information

© Springer-Verlag 2010