Skip to main content
Log in

A miniature mass analyser for in-situ elemental analysis of planetary material–performance studies

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The performance of a laser ablation mass analyser designed for in-situ exploration of the chemical composition of planetary surfaces has been investigated. The instrument measures the elemental and isotopic composition of raw solid materials with high spatial resolution. The initial studies were performed on NIST standard materials using IR laser irradiance (< 1 GW cm−2) at which a high temporal stability of ion formation and sufficiently low sample consumption was achieved. Measurements of highly averaged spectra could be performed with typical mass resolution of mm ≈ 600 in an effective dynamic range spanning seven decades. Sensitive detection of several trace elements can be achieved at the ~ ppm level and lower. The isotopic composition is usually reproduced with 1% accuracy, implying good performance of the instrument for quantitative analysis of the isotopic fractionation effects caused by natural processes. Using the IR laser, significant elemental fractionation effects were observed for light elements and elements with a high ionization potential. Several diatomic clusters of major and minor elements could also be measured, and sometimes these interfere with the detection of trace elements at the same nominal mass. The potential of the mass analyser for application to sensitive detection of elements and their isotopes in realistic samples is exemplified by measurements of minerals. The high resolution and large dynamic range of the spectra makes detection limits of ~100 ppb possible.

The mass spectrum of Allende meteorite measured by a miniature laser ablation mass spectrometer. Similar mass spectra of planetary materials in-situ could be measured with spatial resolution of 10-100 μm (white circles) providing means for chemical analysis of planetary surfaces

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zelenyi LM, Zakharov AV, Ksanfomality LV (2009) Phys Usp 52:1056

    Article  CAS  Google Scholar 

  2. Wurz P, Whithby JA, Managadze GG (2009) AIP Conf Proc 144:70

    Article  Google Scholar 

  3. Brinckerhoff WB, Managadze GG, McEntire RW, Cheng AF, Green WJ (2000) Rev Sci Instrum 71:536

    Article  CAS  Google Scholar 

  4. Rohner U, Whitby JA, Wurz P (2003) Meas Sci Technol 14:2159

    Article  CAS  Google Scholar 

  5. Managadze GG, Shutyaev IY (1993) In: Vertes A, Gijebels R, Adams F (eds) Laser ionization mass analysis. Wiley, New York

    Google Scholar 

  6. Ehlmann BL (2008) Science 322:1828

    Article  CAS  Google Scholar 

  7. Zinner E, Göpfel C (2002) Meteorit Planet Sci 37:1001

    Article  CAS  Google Scholar 

  8. Allègre CJ, Manhès G, Göpel C (1995) Geochim Cosmochim Acta 59:1445

    Article  Google Scholar 

  9. Chela-Flores J (2010) Int J Astrobiol 9:101

    Article  CAS  Google Scholar 

  10. Corrigan CM, Brinckerhoff WB, Cornish T, Ecelberger S (2007) Meteor Planet Sci 42:33

    Google Scholar 

  11. Spencer MK, Hammond MR, Zare RN (2008) PNAS 105:18096

    Article  CAS  Google Scholar 

  12. Demirev PA, Fenselau C (2008) Anal Rev Anal Chem 1:71

    Article  CAS  Google Scholar 

  13. Sagdeev RZ, Zakharov AV (1990) Sov Astron Lett 16:125

    Google Scholar 

  14. Managadze GG, Wurz P, Sagdeev RZ, Chumikov AE, Tuley M, Yakovleva M, Managadze NG, Bondarenko AL (2010) Sol Syst Res 44:376

    Article  CAS  Google Scholar 

  15. Fenner NC, Daly NR (1966) Rev Sci Instrum 37:1068

    Article  CAS  Google Scholar 

  16. Bernal E, Levine LP, Ready JF (1966) Rev Sci Instrum 37:938

    Article  Google Scholar 

  17. Hercules DM (1988) Microchem J 38:3

    Article  CAS  Google Scholar 

  18. Quan Y, Chen L, Huang R, Hang W, He J, Huang B (2009) Trends Anal Chem 28:1174–1185

    Article  Google Scholar 

  19. Pipps CR, Dreyfus RW, Adams F (1993) In: Vertes A, Gijbels R (eds) Laser ionisation mass analysis. Wiley, New York

    Google Scholar 

  20. Brinckerhoff WB (2003) Acta Astronaut 52:397

    Article  CAS  Google Scholar 

  21. Woll DM, Wahl M, Oechsner H (1999) J Anal Chem 36:70

    Google Scholar 

  22. Knight AK, Scherbarth NL, Cremers DA, Ferris MJ (2000) Appl Spectrosc 54:331

    Article  CAS  Google Scholar 

  23. Vertes A, Gijebels R, Adams F (eds) (1993) Laser ionization mass analysis. Wiley, New York

    Google Scholar 

  24. Cotter RJ (1987) Anal Chim Acta 195:45

    Article  CAS  Google Scholar 

  25. Amoruso S, Berardi V, Bruzzese R, Spinell N, Wang X (1998) Appl Surf Sci 127–129:953

    Article  Google Scholar 

  26. Buchsbaum A, Rauchbauer G, Varga P, Schmid M (2008) Rev Sci Instrum 79:043301

    Article  CAS  Google Scholar 

  27. Dietze HJ, Becker JS (1993) In: Vertes A, Gijbels R, Adams F (eds) Laser ionisation mass analysis. Wiley, New York

    Google Scholar 

  28. Brinckerhoff WB (2004) Appl Phys A 79:953

    Article  CAS  Google Scholar 

  29. Brinckerhoff WB (2005) Planet Sp Sci 53:817

    Article  CAS  Google Scholar 

  30. Scherer S, Altwegg K, Balsiger H, Fischer J, Jäckel A, Korth A, Mildner M, Piazza D, Rème H, Wurz P (2010) Int J Mass Spectr 251:73

    Article  Google Scholar 

  31. Burakov VS, Tarasenko NV, Savasenko NA (2001) Spectrochim Acta B 56:961

    Article  Google Scholar 

  32. Managadze GG, Brinckerhoff WB, Chumikov AE (2003) Geophys Res Lett 30:1247

    Article  Google Scholar 

  33. Becker JS (2007) Inorganic mass spectrometry. Principles and applications Springer, Berlin/Heidelberg

    Book  Google Scholar 

  34. Günther D, Jackson SE, Longerich HP (1999) Spectrochim Acta B 54:381

    Article  Google Scholar 

  35. www.handbookofmineralogy.org/pdfs/galena.pdf

  36. Riedo A, Wahlström P, Scheer JA, Wurz P, Tulej M (2010) J Appl Phys 108: in press

  37. Jarosevich E (1990) Meteoritics 25:323

    Google Scholar 

  38. Jarosevich E, Nelson JA, Norberg JA (1980) Geostandards News 14:43

    Article  Google Scholar 

  39. Heinrich CA, Pettke T, Halter WE, Aigner-Torres M, Audétat A, Günther D, Hattendorf B, Bleiner D, Guillong M, Horn I (2003) Geochim Cosmochim Acta 67:3473

    Article  CAS  Google Scholar 

  40. Russo RE, Mao X, Gonzalez JJ, Mao SS (2002) J Anal At Spectrom 17:1072

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Tulej.

Additional information

Published in the special issue Laser Ablation with Guest Editors Detlef Günther and Jan Fietzke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tulej, M., Iakovleva, M., Leya, I. et al. A miniature mass analyser for in-situ elemental analysis of planetary material–performance studies. Anal Bioanal Chem 399, 2185–2200 (2011). https://doi.org/10.1007/s00216-010-4411-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4411-3

Keywords

Navigation