Skip to main content

Advertisement

Log in

The influence of intracellular storage material on bacterial identification by means of Raman spectroscopy

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Previous studies dealing with bacterial identification by means of Raman spectroscopy have demonstrated that micro-Raman is a suitable technique for single-cell microbial identification. Raman spectra yield fingerprint-like information about all chemical components within one cell, and combined with multivariate methods, differentiation down to species or even strain level is possible. Many microorganisms may accumulate high amounts of polyhydroxyalkanoates (PHA) as carbon and energy storage materials within the cell and the Raman bands of PHA might impede the identification and differentiation of cells. To date, the identification by means of Raman spectroscopy have never been tested on bacteria which had accumulated PHA. Therefore, the aim of this study is to investigate the effect of intracellular polymer accumulation on the bacterial identification rate. Combining fluorescence imaging and Raman spectroscopy, we identified polyhydroxybutyrate (PHB) as a storage polymer accumulating in the investigated cells. The amount of energy storage material present within the cells was dependent on the physiological status of the microorganisms and strongly influenced the identification results. Bacteria in the stationary phase formed granules of crystalline PHB, which obstructed the Raman spectroscopic identification of bacterial species. The Raman spectra of bacteria in the exponential phase were dominated by signals from the storage material. However, the bands from proteins, lipids, and nucleic acids were not completely obscured by signals from PHB. Cells growing under either oxic or anoxic conditions could also be differentiated, suggesting that changes in Raman spectra can be interpreted as an indicator of different metabolic pathways. Although the presence of PHB induced severe changes in the Raman spectra, our results suggest that Raman spectroscopy can be successfully used for identification as long as the bacteria are not in the stationary phase.

Stained bacteria with or without PHB within the cells, and the corresponding Raman spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Neufeld JD, Wagner M, Murrell JC (2007) ISME J 1:103

    Article  CAS  Google Scholar 

  2. Amann R, Ludwig W (2000) FEMS Microbiol Rev 24:555

    Article  CAS  Google Scholar 

  3. Amann RI, Ludwig W, Schleifer KH (1995) Microbiol Rev 59:143

    CAS  Google Scholar 

  4. Kirschner C, Maquelin K, Pina P, Ngo Thi NA, Choo-Smith L-P, Sockalingum GD, Sandt C, Ami D, Orsini F, Doglia SM, Allouch P, Mainfait M, Puppels GJ, Naumann D (2001) J Clin Microbiol 39:17639

    Article  Google Scholar 

  5. Naumann D, Keller S, Helm D, Schultz Ch, Schrader B (1995) J Mol Struct 347:399

    Article  CAS  Google Scholar 

  6. Lopez-Diez EC, Goodacre R (2004) Anal Chem 76:585

    Article  CAS  Google Scholar 

  7. Maquelin K, Dijkshoorn L, van der Reijen TJK, Puppels GJ (2006) J Microbiol Method 64:126

    Article  CAS  Google Scholar 

  8. Rösch P, Harz M, Peschke K-D, Ronneberger O, Burkhardt H, Popp J (2006) Biopolymers 82:312

    Article  Google Scholar 

  9. Rösch P, Harz M, Peschke K-D, Ronneberger O, Burkhardt H, Schüle A, Schmauz G, Lankers M, Hofer S, Thiele H, Motzkus H-W, Popp J (2006) Anal Chem 78:2163

    Article  Google Scholar 

  10. Huang WE, Stoecker K, Griffiths R, Newbold L, Daims H, Whiteley AS, Wagner M (2007) Environ Microbiol 9:1878

    Article  CAS  Google Scholar 

  11. Tarcea N, Harz M, Rösch P, Frosch T, Schmitt M, Thiele H, Hochleitner R, Popp J (2007) Spectrochim Acta A 68:1029

    Article  Google Scholar 

  12. Maquelin K, Choo-Smith LP, van Vreeswijk T, Endtz HP, Smith B, Bennett R, Bruining HA, Puppels GJ (2000) Anal Chem 72:12

    Article  CAS  Google Scholar 

  13. Krause M, Radt B, Rösch P, Popp J (2007) J Raman Spectrosc 38:369

    Article  CAS  Google Scholar 

  14. Harz M, Kiehntopf M, Stöckel S, Rösch P, Straube E, Deufel T, Popp J (2009) J Biophotonics 2:70

    Article  CAS  Google Scholar 

  15. Harz M, Rösch P, Peschke K-D, Ronneberger O, Burkhardt H, Popp J (2005) Analyst 130:1543

    Article  CAS  Google Scholar 

  16. Urlaub E, Popp J, Kiefer W, Bringmann G, Koppler D, Schneider H, Zimmermann U, Schrader B (1994) Biospectrosc 4:113

    Article  Google Scholar 

  17. Baranska M, Schulz H, Rösch P, Strehle MA, Popp J (2004) Analyst 129:926

    Article  CAS  Google Scholar 

  18. Krafft C (2004) Anal Bioanal Chem 378:60

    Article  CAS  Google Scholar 

  19. Schulz H, Baranska M, Belz H-H, Rösch P, Strehle MA, Popp J (2004) Vib Spectrosc 35:81

    Article  CAS  Google Scholar 

  20. Min Y-K, Yamamoto T, Kohda E, Ito T, Hamaguchi H (2005) J Raman Spectrosc 36:73

    Article  CAS  Google Scholar 

  21. Schulz H, Baranska M (2007) Vib Spectrosc 43:13

    Article  CAS  Google Scholar 

  22. Schmitt M, Popp J (2006) J Raman Spectrosc 37:20

    Article  CAS  Google Scholar 

  23. Edwards HGM (2004) Analyst 129:870

    Article  CAS  Google Scholar 

  24. Baraldi P, Tinti A (2008) J Raman Spectrosc 39:963

    Article  CAS  Google Scholar 

  25. Pätzold R, Keuntje M, Theophile K, Müller J, Mielcarek E, Ngezahayo A, Ahlften A-v (2008) J Microbiol Meth 72:241

    Article  Google Scholar 

  26. Maquelin K, Kirschner C, Choo-Smith L-P, van den Braak N, Ph Endtz H, Naumann D, Puppels GJ (2002) J Microbiol Meth 51:255–271

    Article  CAS  Google Scholar 

  27. Berger AJ, Zhu Q (2003) J Mod Opt 50:2375

    CAS  Google Scholar 

  28. Rösch P, Schmitt M, Kiefer W, Popp J (2003) J Mol Struct 661–662:363

    Article  Google Scholar 

  29. Rösch P, Harz M, Schmitt M, Peschke K-D, Ronneberger O, Bukhardt H, Motzkus H, Lankers M, Hofer S, Thiele H, Popp J (2005) Appl Environ Microbiol 71:1626

    Article  Google Scholar 

  30. Hutsebaut D, Vandroemme J, Heyrman J, Dawyndt P, Vandenabeele P, Moens L, De Vos P (2006) Sys Appl Microbiol 29:650

    Article  Google Scholar 

  31. Gaus K, Rösch P, Petry R, Peschke K-D, Ronneberger O, Burkhardt H, Buamann K, Popp J (2006) Biopolymers 82:286

    Article  CAS  Google Scholar 

  32. Harz M, Rösch P, Popp J (2009) Cytom A 75:104

    Article  CAS  Google Scholar 

  33. Krause M, Rösch P, Radt B, Popp J (2008) Anal Chem 80:8568

    Article  CAS  Google Scholar 

  34. Bashin M, Reinherz EL, Reche PA (2006) J Comput Biol 13:102

    Article  Google Scholar 

  35. Noble WS (2006) Nat Biotechnol 24:1565

    Article  CAS  Google Scholar 

  36. Senior PJ, Beech GA, Ritchie GAF, Dawes EA (1972) Biochem J 128:1193

    CAS  Google Scholar 

  37. Lee SY (1996) Biotechnol Bioeng 49:1

    Article  CAS  Google Scholar 

  38. Anderson AJ, Dawes EA (1990) Microbiol Rev 54:450

    CAS  Google Scholar 

  39. Freier T, Kunze C, Nischan C, Kramer S, Sternberg K, Saß M, Hopt UT, Schmitz K-P (2002) Biomaterials 23:2649

    Article  CAS  Google Scholar 

  40. Jo S-J, Maeda M, Ooi T, Taguchi S (2006) J Biosci Bioeng 102:233

    Article  CAS  Google Scholar 

  41. Page WJ, Knosp O (1989) Appl Environ Microbiol 55:1334

    CAS  Google Scholar 

  42. Yamane T (1993) Biotechnol Bioeng 41:165

    Article  CAS  Google Scholar 

  43. Bormann EJ, Roth M (1999) Biotechnol Lett 21:1059

    Article  CAS  Google Scholar 

  44. Hong K, Sun S, Tian W, Chen GQ, Huang W (1999) Appl Microbiol Biotechnol 51:523

    Article  CAS  Google Scholar 

  45. Degelau A, Scheper T, Bailey JE, Guske C (1995) Appl Microbiol Biotechnol 42:653

    Article  CAS  Google Scholar 

  46. De Gelder J, Willemse-Erix D, Schotles MJ, Sanchez JI, Maquelin K, Vandenabeele P, De Boever P, Puppels GJ, Moens L, De Vos P (2008) Anal Chem 80:2155

    Article  Google Scholar 

  47. Bormann EJ, Leißner M, Roth M, Beer B, Metzner K (1998) Appl Microbiol Biotechnol 50:604

    Article  CAS  Google Scholar 

  48. Furukawa T, Sato H, Murakami R, Zhang J, Noda I, Ochiai S, Ozaki Y (2006) Polymer 47:3132

    Article  CAS  Google Scholar 

  49. Schmid U, Rösch P, Krause M, Harz M, Popp J, Baumann K (2009) Chemometr Intell Lab 96:159

    Article  CAS  Google Scholar 

  50. Küsel K, Dorsch T, Acker G, Stackebrandt E (1999) Appl Environ Microbiol 65:3633

    Google Scholar 

  51. Küsel K, Roth U, Drake HL (2002) Environ Microbiol 4:414

    Article  Google Scholar 

  52. Ryan CG, Clayton E, Griffin WL, Sie SH, Cousens DR (1988) Nucl Instrum Meth B 34:396

    Article  Google Scholar 

  53. Pearson K (1901) Philos Mag 2:559

    Google Scholar 

  54. Tax DMJ, Duin RPW (2002) ICPR 2:20124

    Google Scholar 

  55. Burges CJC (1998) Data Min Knowl Disc 2:121

    Article  Google Scholar 

Download references

Acknowledgment

We highly acknowledge the financial support from the Deutsche Forschungsgemeinschaft (Graduate School 1257 “Alteration and element mobility at the microbe-mineral interface”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Popp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciobotă, V., Burkhardt, EM., Schumacher, W. et al. The influence of intracellular storage material on bacterial identification by means of Raman spectroscopy. Anal Bioanal Chem 397, 2929–2937 (2010). https://doi.org/10.1007/s00216-010-3895-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3895-1

Keywords

Navigation