Skip to main content
Log in

Trimethylsilyldiazomethane (TMSD) as a new derivatization reagent for trace analysis of selected non-steroidal anti-inflammatory drugs (NSAIDs) by gas chromatography methods

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most common groups of pharmaceuticals detected in environmental matrices. Although several derivatization procedures have been employed in the gas chromatographic analysis of NSAIDs, the application of trimethylsilyldiazomethane has never yet been reported. This work has studied the derivatization of widely used NSAIDs (ibuprofen, ketoprofen and naproxen) by trimethylsilyldiazomethane. Special emphasis was placed on the influence of temperature and reaction time on the reaction yield, and on the determination of the instrumental detection limit. The results are compared with those obtained by methylation using boron trifluoride methanol solution, and by silylation with a mixture of N,O-bis(trimethylsilyl)trifluoroacetamide and trimethylchlorosilane (99:1, v/v) and with N-methyl-N-[tert-butyldimethylsilyl]trifluoroacetamide. The derivatization of ibuprofen, ketoprofen and naproxen by trimethylsilyldiazomethane was shown to be simple, fast, efficient, and suitable for trace analysis (the respective instrumental detection limits for ibuprofen naproxen, and ketoprofen were 2, 4, and 4 ng). Trimethylsilyldiazomethane can be used as an alternative reagent for determining acidic drugs in environmental matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Petrovic M, Barcelò D (2001) Emerging contaminants from industrial and municipal waste occurrence, analysis and effect. Springer, Berlin

    Google Scholar 

  2. Nikolaou A, Meric S, Fatta D (2007) Anal Bioanal Chem 387:1225–1234

    Article  CAS  Google Scholar 

  3. Kümmerer K (2009) J Environ Manag 90:2354–2366

    Article  Google Scholar 

  4. Santos LHMLM, Araujo AN, Fachini A, Pena A, Delerue-Matos C, Montenegro MCBSM (2010) J Hazard Mater 175:45–95

    Article  CAS  Google Scholar 

  5. Petrovic M, Gros M, Barcelo D (2006) J Chromatogr A 1124:68–81

    Article  CAS  Google Scholar 

  6. Farré M, Petrovic M, Barceló D (2007) Anal Bioanal Chem 387:1203–1214

    Article  Google Scholar 

  7. Hernando MD, Heath E, Petrovic M, Barceló D (2006) Anal Bioanal Chem 385:985–991

    Article  CAS  Google Scholar 

  8. Öllers S, Singer HP, Fässler P, Müller SR (2001) J Chromatogr A 911:225–234

    Article  Google Scholar 

  9. Weigel S, Kuhlmann J, Hühnerfuss H (2002) Sci Total Environ 295:131–141

    Article  CAS  Google Scholar 

  10. Zwiener C, Frimmel FH (2003) Sci Total Environ 309:201–211

    Article  CAS  Google Scholar 

  11. Weigel S, Kallenborn R, Hühnerfuss H (2004) J Chromatogr A 1023:183–195

    Article  CAS  Google Scholar 

  12. Verenitch SS, Lowe CJ, Mazumder A (2006) J Chromatogr A 1116:193–203

    Article  CAS  Google Scholar 

  13. Lin W-C, Chen H-C, Ding W-H (2005) J Chromatogr A 1065:279–285

    Article  CAS  Google Scholar 

  14. Sebők Á, Vasanits-Zsigrai A, Palkó G, Záray G, Molnár-Perl I (2008) Talanta 76:642–650

    Article  Google Scholar 

  15. Kosjek T, Heath E, Krbavčič A (2005) Environ Int 31:679–685

    Article  CAS  Google Scholar 

  16. Moeder M, Schrader S, Winkler M, Popp P (2000) J Chromatogr A 873:95–106

    Article  CAS  Google Scholar 

  17. Rice SL, Mitra S (2007) Anal Chim Acta 589:125–132

    Article  CAS  Google Scholar 

  18. Yu Z, Peldszus S, Huck PM (2007) J Chromatogr A 1148:65–77

    Article  CAS  Google Scholar 

  19. Jones OAH, Voulvoulis N, Lester JNT (2007) Environ Pollut 145:738–744

    Article  CAS  Google Scholar 

  20. Lee H-B, Peart TE, Svoboda ML (2005) J Chromatogr A 1094:122–129

    Article  CAS  Google Scholar 

  21. Soulet B, Tauxe A, Tarradellas J (2002) Int J Environ Anal Chem 82:659–667

    Article  CAS  Google Scholar 

  22. Sacher F, Thomas Lange F, Brauch HJ, Blankenhorn I (2001) J Chromatogr A 938:199–210

    Article  CAS  Google Scholar 

  23. Koutsouba V, Heberer T, Fuhrmann B, Schmidt-Baumler K, Tsipi D, Hiskia A (2003) Chemosphere 51:69–75

    Article  CAS  Google Scholar 

  24. Quintana JB, Carpinterio J, Rodríguez I (2007) Analysis fate and removal of pharmaceuticals in the water cycle. Elsevier, Amsterdam

    Google Scholar 

  25. Blau K, Darbre A Handbook of derivatives for chromatography. Wiley, New York

  26. Wells RJ (1999) J Chromatogr A 843:1–18

    Article  CAS  Google Scholar 

  27. Presser A, Hüfner A (2004) Monatsh Chem 135:1015–1022

    CAS  Google Scholar 

  28. Lamoureux G, Agüero C (2009) Arkivoc (i):251–264

  29. Yu LZ, Wells MJM (2007) J Chromatogr A 1143:16–25

    Article  CAS  Google Scholar 

  30. Ranz A, Eberl A, Maier E, Lankmayr E (2008) J Chromatogr A 1192:282–288

    Article  CAS  Google Scholar 

  31. Method 515.1, Revision 4.1, Methods for the Determination of Organic Compounds in Drinking Water, Suppl. III, EPA-600/R-95/131, US Environmental Protection Agency, Washington, DC, 1995, p. 245

  32. Method 515.2, Revision 1.1, Methods for the Determination of Organic Compounds in Drinking Water, Suppl. III, EPA-600/R-95/131, US Environmental Protection Agency, Washington, DC, 1995, p. 279

  33. Shareef A, Angove MJ, Wells JD (2006) J Chromatogr A 1108:121–128

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Financial support was provided by the Polish Ministry of Research and Higher Education under grants NN204 260 237 and DS 8200-4-0085-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jolanta Kumirska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Migowska, N., Stepnowski, P., Paszkiewicz, M. et al. Trimethylsilyldiazomethane (TMSD) as a new derivatization reagent for trace analysis of selected non-steroidal anti-inflammatory drugs (NSAIDs) by gas chromatography methods. Anal Bioanal Chem 397, 3029–3034 (2010). https://doi.org/10.1007/s00216-010-3853-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3853-y

Keywords

Navigation