Skip to main content

Advertisement

Log in

An improved one-tube RT-PCR protocol for analyzing single-cell gene expression in individual mammalian cells

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

It is well known that gene expression is regulated at the level of individual cells, and more evidence is now emerging that heterogeneity of cell regulation is orders of magnitude greater than previously thought. In order to detect meaningful variations in transcription levels, it is necessary to measure gene expression at single cell levels rather than in bulk cells, where individual differences or heterogeneity could be lost. In this work, we report an improved reverse-transcriptase polymerase chain reaction (RT-PCR) protocol which allows the direct measurement of gene expression in one tube (5–25 μl of total PCR mixture) at the single mammalian cell level. The protocol employs a new cell lysis buffer, and involves no RNA isolation or nested PCR steps, significantly reducing the possibility of contamination and errors. We successfully applied this protocol in qRT-PCR and linear-after-the-exponential (LATE)-PCR to analyze selected genes of various expression levels from three cell lines. Although further characterization of RNA stability is important, the preliminary results showed that gene expression heterogeneity could be common among members of genetically identical cell populations. The protocol illustrated can be utilized for a wide array of applications without much modification, such as cancer cell analysis and preimplantation genetic diagnostics. In addition, the protocol is based on intercalator-based (SYBR Green PCR) chemistry, which is less expensive and suitable for high-throughput platforms.

Gene expression heterogeneity in genetically identical cell population. qRT-PCR analysis of p53 transcript in HeLa cells with two negative controls in red. (A) qRT-PCR analysis of p53 transcript with 10 cells in each PCR. 10 PCR were analyzed; (B) qRT-PCR analysis of p53 transcript with 5 cells in each reaction. 8 PCR were analyzed; (C) qRT-PCR analysis of p53 transcript with single cell in each reaction tube. 9 reactions were analyzed; and (D) Statistical analysis on Ct values from panel A, B, and C above. The final total volume is 25 μl for all PCR analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Eddinger TG, Meer DP (1997) Comp Biochem Physiol 117B:29–38

    CAS  Google Scholar 

  2. Lidstrom ME, Meldrum DR (2003) Nat Rev Microbiol 1:158–164

    Article  CAS  Google Scholar 

  3. Jensen KB, Watt FM (2006) Proc Natl Acad Sci USA 103:11958–11963

    Article  CAS  Google Scholar 

  4. Ross IL, Browne CM, Hume DA (1994) Immunol Cell Biol 72:177–185

    Article  CAS  Google Scholar 

  5. Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Science 297:1183–1186

    Article  CAS  Google Scholar 

  6. Blake WJ, Kaern M, Cantor CR, Collins JJ (2003) Nature 422:633–637

    Article  CAS  Google Scholar 

  7. Cai L, Friedman N, Xie XS (2006) Nature 440:358–362

    Article  CAS  Google Scholar 

  8. Maheshri N, O’Shea EK (2007) Ann Rev Biophys Biomol Struct 36:413–434

    Article  CAS  Google Scholar 

  9. Raj A, Peskin CS, Tranchina D, Vargas DY, Tyagi S (2006) PLoS Biol 4:e309

    Article  Google Scholar 

  10. Esumi S, Kaneko R, Kawamura Y, Yagi T (2006) Nat Protoc 1:2143–2151

    Article  CAS  Google Scholar 

  11. Kubista M, Andrade JM, Bengtsson M, Forootan A, Jonak J, Lind K, Sindelka R, Sjöback R, Sjögreen B, Strömbom L, Ståhlberg A, Zoric N (2006) Mol Aspects Med 27:95–125

    Article  CAS  Google Scholar 

  12. Nolan T, Hands RE, Bustin SA (2006) Nat Protoc 1:1559–1582

    Article  CAS  Google Scholar 

  13. Hartshorn C, Eckert J, Hartung O, Wangh L (2007) BMC Biotechnol 7:87

    Article  Google Scholar 

  14. Lindqvist N, Vidal-Sanz M, Hallbook F (2002) Brain Res Protoc 10:75–83

    Article  CAS  Google Scholar 

  15. Wacker MJ, Tehel MM, Gallagher PM (2008) J Appl Physiol 105:308–315

    Article  CAS  Google Scholar 

  16. Eberwine J, Yeh H, Miyashiro K, Cao Y, Nair S, Finnell R, Zettel M, Coleman P (1992) Proc Natl Acad Sci USA 89:3010–3014

    Article  CAS  Google Scholar 

  17. Christensen KV, Lambert DWM, JDC EJ (2000) NeuroReport 11:3577–3582

    Article  CAS  Google Scholar 

  18. Esumi S, Wu SX, Yanagawa Y, Obata K, Sugimoto Y, Tamamaki N (2008) Neurosci Res 60:439–451

    Article  CAS  Google Scholar 

  19. Faumont N, Saati TA, Brousset P, Offer C, Delson G, Meggetto F (2001) J Gen Virol 82:1169–1174

    CAS  Google Scholar 

  20. Miragi T, Murakami K, Sawada T, Taguchi H, Miyoshi I (1998) Leukemia 12:1645–1650

    Article  Google Scholar 

  21. Liss B (2002) Nucleic Acids Res 30:e89

    Article  Google Scholar 

  22. Yan L, Kaczorowski G, Kohler M (2002) Anal Biochem 304:267–270

    Article  CAS  Google Scholar 

  23. Vrettou C, Traeger-Synodinos J, Tzetis M, Palmer G, Sofocleous C, Kanavakis E (2004) Hum Mutat 23:513–521

    Article  CAS  Google Scholar 

  24. Peixoto A, Monteiro M, Rocha B, Veiga-Fernandes H (2004) Genome Res 14:1938–1947

    Article  CAS  Google Scholar 

  25. Taniguchi K, Kajiyama T, Kambara H (2009) Nat Meth 6:503–506

    Article  CAS  Google Scholar 

  26. Szöllős E, Hellgren O, Hasselquis D (2008) J Parasitol 94:562–564

    Article  Google Scholar 

  27. Polanca-Wessels MC, Barrett MT, Galipeau PC, Rohrer KL, Reid BJ, Rabinovitch PS (1998) Gastroenterology 114:295–304

    Article  Google Scholar 

  28. Palanca-Wessels MCA, Klingelhutz A, Reid BJ, Norwood TH, Opheim KF (2003) Carcinogenesis 24:1183–1190

    Article  CAS  Google Scholar 

  29. Anis YH, Holl MR, Meldrum DR (2008) Automated vision-based selection and placement of single cells in microwell array formats. In: Proc 4th IEEE Conf Automation Science and Engineering, Washington, DC, USA, 23–26 Aug 2008, p 315

  30. Sanchez JA, Pierce KE, Rice JE, Wangh LJ (2004) Proc Natl Acad Sci USA 101:1933–1938

    Article  CAS  Google Scholar 

  31. Pierce KE, Sanchez JA, Rice JE, Wangh LJ (2005) Proc Natl Acad Sci USA 102:8609–8614

    Article  CAS  Google Scholar 

  32. Hartshorn C, Anshelevich A, Wangh LJ (2005) BMC Biotechnol 5:2

    Article  Google Scholar 

  33. Salk JJ, Sanchez JA, Peirce KE, Rice JE, Soares KC, Wangh LJ (2006) Anal Biochem 353:124–132

    Article  CAS  Google Scholar 

  34. Phillips JK, Lipski J (2000) Auton Neurosci 86:1–12

    Article  CAS  Google Scholar 

  35. McGuire S, Fisher C, Holl MR, Meldrum DR (2008) Rev Sci Instrum 79:086111

    Article  Google Scholar 

  36. Nandakumar V, Holl MR, Meldrum DR (2008) A flexible framework for automation of single cell and cell-to-cell interaction analyses. In: Proc 4th IEEE Conf Automation Science and Engineering, Washington, DC, USA, 23–26 Aug 2008, p 424

  37. Chao SH, Meldrum DR (2009) Lab Chip 9:867–869

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Drs. L. Wangh and A. Sanchez from Brandies University for their help with LATE-PCR technology. We would also like to thank Dr. B. Reid for kindly supplying the CP-C cells. Dr. Y. Anis is acknowledged for his help with single-cell loading. This work was supported by a CEGS Microscale Life Science Center (MLSC) project (Grant #: p50-HG002360) from NIH, USA.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongzhong Li or Weiwen Zhang.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESMpdf (PDF 680 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Thompson, H., Hemphill, C. et al. An improved one-tube RT-PCR protocol for analyzing single-cell gene expression in individual mammalian cells. Anal Bioanal Chem 397, 1853–1859 (2010). https://doi.org/10.1007/s00216-010-3754-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3754-0

Keywords

Navigation