Skip to main content

Advertisement

Log in

Real-time measurement of endosomal acidification by a novel genetically encoded biosensor

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Genetically encoded fluorescent proteins are optimal reporters when used to monitor cellular processes as they can be targeted to any subcellular region by fusion to a protein of interest. Here, we present the pH-sensitive fluorescent protein E1GFP which is ideally suited to monitor pH changes in dynamic intracellular structures in real time with high spatio temporal resolution. E1GFP is a ratiometric pH indicator by emission with a pK close to 6.0. We describe an application of this novel pH reporter in the measurement of pH changes along the endo-lysosomal pathway. By fusing E1GFP to the HIV-Tat protein which is endowed with cell-penetrating properties, we were able to monitor multi-step endocytosis from the initial cell-surface binding through to the intracellular endocytic network in real time. This represents a framework for the application of E1GFP to the in situ detection of pH changes involved in dynamic biological phenomena.

The green fluorecent protein variant, E1GFP, is a ratiometric pH-indicator by emission with a pK close to 6.0 and is therefore particularly suitable for pH detection below neutrality. Upon excitation of the neutral state of the chromophore (~400-410 nm), E1GFP emission properties are strongly dependent on the environmental pH. We describe an application of this novel pH-reporter in the measurement of pH changes along the endo-lysosomal pathway. By fusing E1GFP to the HIV-Tat protein, which is endowed with cell-penetrating properties, we were able to monitor in real-time multi-step endocytosis from the initial cell-surface binding through to the intracellular endocytic network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gruenberg J (2001) Nat Rev Mol Cell Biol 2:721–730

    Article  CAS  Google Scholar 

  2. Mellman I, Warren G (2000) Cell 100:99–112

    Article  CAS  Google Scholar 

  3. Fuchs R, Schmid S, Mellman I (1989) Proc Natl Acad Sci USA 86:539–543

    Article  CAS  Google Scholar 

  4. Gruenberg J, Stenmark H (2004) Nat Rev Mol Cell Biol 5:317–323

    Article  CAS  Google Scholar 

  5. Bizzarri R, Arcangeli C, Arosio D, Ricci F, Faraci P, Cardarelli F, Beltram F (2006) Biophys J 90:3300–3314

    Article  CAS  Google Scholar 

  6. Gagescu R, Demaurex N, Parton RG, Hunziker W, Huber LA, Gruenberg J (2000) Mol Biol Cell 11:2775–2791

    CAS  Google Scholar 

  7. Bache KG, Stuffers S, Malerod L, Slagsvold T, Raiborg C, Lechardeur D, Walchli S, Lukacs GL, Brech A, Stenmark H (2006) Mol Biol Cell 17:2513–2523

    Article  CAS  Google Scholar 

  8. Cardarelli F, Serresi M, Bizzarri R, Beltram F (2008) Traffic 9:528–539

    Article  CAS  Google Scholar 

  9. Arosio D, Garau G, Ricci F, Marchetti L, Bizzarri R, Nifosi’ R, Beltram F (2007) Biophys J 93(932):944

    Google Scholar 

  10. Abad MF, Di Benedetto G, Magalhaes PJ, Filippin L, Pozzan T (2004) J Biol Chem 279:11521–11529

    Article  CAS  Google Scholar 

  11. Miesenbock G, De Angelis DA, Rothman JE (1998) Nature 394:192–195

    Article  CAS  Google Scholar 

  12. Hanson GT, McAnaney TB, Park ES, Rendell ME, Yarbrough DK, Chu S, Xi L, Boxer SG, Montrose MH, Remington SJ (2002) Biochemistry 41:15477–15488

    Article  CAS  Google Scholar 

  13. McAnaney TB, Park ES, Hanson GT, Remington SJ, Boxer SG (2002) Biochemistry 41:15489–15494

    Article  CAS  Google Scholar 

  14. Jentsch TJ (2007) Phisiol J 578:633–640

    Article  CAS  Google Scholar 

  15. Vendeville A, Rayne F, Bonhoure A, Bettache N, Montcourrier P, Beaumelle B (2004) Mol Biol Cell 15:2347–2360

    Article  CAS  Google Scholar 

  16. Raha T, Cheng SW, Green MR (2005) PLos Biol 3:e44

    Article  CAS  Google Scholar 

  17. Pelkmans L, Kartenbeck J, Helenius A (2001) Nat Cell Biol 3:473–483

    Article  CAS  Google Scholar 

  18. Tyagi M, Rusnati M, Presta M, Giacca M (2001) J Biol Chem 276:3254–3261

    Article  CAS  Google Scholar 

  19. Bizzarri R, Nifosi R, Abbruzzetti S, Rocchia W, Guidi S, Arosio D, Garau G, Campanini B, Grandi E, Ricci F, Viappiani C, Beltram F (2007) Biochemistry 46:5494–5504

    Article  CAS  Google Scholar 

  20. Jayaraman S, Haggie P, Wachter RM, Remington SJ, Verkman AS (2000) J Biol Chem 275:6047–6050

    Article  CAS  Google Scholar 

  21. Serresi M, Piccinini G, Pierpaoli E, Fazioli F (2004) Oncogene 23:1098–1108

    Article  CAS  Google Scholar 

  22. Piccinini G, Bacchiocchi R, Serresi M, Vivani C, Rossetti S, Gennaretti C, Carbonari D, Fazioli F (2007) J Biol Chem 277:22231–22239

    Article  CAS  Google Scholar 

  23. Cardarelli F, Serresi M, Bizzarri R, Giacca M, Beltram F (2007) Mol Ther 15:1313–1322

    Article  CAS  Google Scholar 

  24. Haupts U, Maiti S, Schwille P, Webb WW (1998) Proc Natl Acad Sci USA 95:13573–13578

    Article  CAS  Google Scholar 

  25. Parton RG, Simons K (2007) Nat Rev Mol Cell Biol 8:185–194

    Article  CAS  Google Scholar 

  26. Thomsen P, Roepstorff K, Stahlhut M, van Deurs B (2002) Mol Biol Cell 13:238–250

    Article  CAS  Google Scholar 

  27. Llopis J, McCaffery JM, Miyawaki A, Farquhar MG, Tsien RY (1998) Proc Natl Acad Sci USA 95:6803–6808

    Article  CAS  Google Scholar 

  28. Bright NA, Gratian MJ, Luzio JP (2005) Curr Biol 15:360–365

    Article  CAS  Google Scholar 

  29. Fasen K, Cerretti DP, Huynh-Do U (2008) Traffic 9:251–266

    CAS  Google Scholar 

  30. Kneen M, Farinas J, Li Y, Verkman AS (1998) Biophys J 74:1591–1599

    Article  CAS  Google Scholar 

  31. Luzio JP, Pryor PR, Bright NA (2007) Nat Rev Mol Cell Biol 8:622–632

    Article  CAS  Google Scholar 

  32. Zuccato E, Blott EJ, Holt O, Sigismund S, Shaw M, Bossi G, Griffiths GM (2007) J Cell Sci 120:191–199

    Article  CAS  Google Scholar 

  33. Lakadamyali M, Rust MJ, Zhuang X (2006) Cell 124:997–1009

    Article  CAS  Google Scholar 

  34. Frankel AD, Pabo CO (1988) Cell 55:1189–1193

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Stefano Luin (Scuola Normale Superiore) for the expert technical assistance and helpful in discussion. The authors also gratefully acknowledge partial the financial support of the Italian Ministry for University and Research (FIRB No. RBLA03ER38) and of the Fondazione Monte dei Paschi di Siena.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michela Serresi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(MOV 453 KB).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serresi, M., Bizzarri, R., Cardarelli, F. et al. Real-time measurement of endosomal acidification by a novel genetically encoded biosensor. Anal Bioanal Chem 393, 1123–1133 (2009). https://doi.org/10.1007/s00216-008-2489-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2489-7

Keywords

Navigation