Skip to main content
Log in

Highly sensitive restriction enzyme assay and analysis: a review

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Biological assays at the single molecule level are crucial to fundamental studies of DNA-protein mechanisms. In order to cater for high throughput applications, one area of immense research potential is single-molecule bioassays where miniaturized devices are developed to perform rapid and effective biological reactions and analyses. With the success of various emerging technologies for engineering miniaturized structures down to the nanoscale level, supported by specialized equipment for detection, many investigations in the field of life science that were once thought impossible can now be actively explored. In this review, the significance of downscaling to the single-molecule level is firstly presented in selected examples, with the focus placed on restriction enzyme assays. To determine the effectiveness of single-molecule restriction enzyme reactions, simple and direct analytical methods based on DNA stretching have often been reliably employed. DNA stretching can be realized based on a number of working principles related to the physical forces exerted on the DNA samples. We then discuss two examples of a nanochannel system and a microchamber system where single-molecule restriction enzyme digestion and DNA stretching have been integrated, which possess prospective capabilities of developing into highly sensitive and high-throughput restriction enzyme assays. Finally, we take a brief look at the general trends in technological development in this field by comparing the advantages and disadvantages of performing assays at bulk, microscale and single-molecule levels.

Minaturization of Restriction Enzyme Assays and DNA Stretching

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

DNA:

Deoxyribonucleic acid

PAA:

Polyacrylamide

LPA:

Linear polyacrylamide

CCD:

Charge-coupled device

λDNA:

Lambda deoxyribonucleic acid

LIF:

Laser-induced fluorescence

AFM:

Atomic force microscopy

ssDNA:

Single-stranded deoxyribonucleic acid

AC:

Alternating current

References

  1. Wong-Hawkes SYF, Chapela MJV, Montembault M (2005) QSAR Comb Sci 24:712–721

    Article  CAS  Google Scholar 

  2. Zou Q, Miao Y, Chen Y, Sridhar U, Chong CS, Chai T, Tie Y, Teh CHL, Lim JS, Heng CK (2002) Sens Actuators A 102:114–121

    Article  Google Scholar 

  3. Yu X, Zhang DY, Li T, Hao L, Li X (2003) Sens Actuators A 108:103–107

    Google Scholar 

  4. Lee SJ, Lee SY (2004) Appl Microbiol Biotechnol 64:289–299

    Article  CAS  Google Scholar 

  5. Woolley AT, Mathes RA (1994) Proc Natl Acad Sci USA 91:11348–11352

    Article  CAS  Google Scholar 

  6. Zhang C, Xing D (2007) Nucleic Acids Res. DOI 10.1093/nar/gkm389

  7. Goto M, Tsukahara T, Sato K, Kitamori T (2007) Anal Bioanal Chem. DOI 10.1007/s00216-007-1496-4

  8. Pal D, Venkataraman V (2002) Sens Actuators A 102:151–156

    Google Scholar 

  9. Chen Z, Qian S, Abrams WR, Malamud D, Bau HH (2004) Anal Chem 76:3707–3715

    Google Scholar 

  10. Yi C, Zhang Q, Li C-W, Yang J, Zhao J, Yang M (2006) Anal Bioanal Chem 384:1259–1268

    Google Scholar 

  11. Taylor TB, Winn-Deen ES, Picozza E, Woudenberg T, Albin M (1997) Nucleic Acids Res 25:3164–3168

    Article  CAS  Google Scholar 

  12. Matsui N, Kaya T, Nagamine K, Yasukawa T, Shiku H, Matsue T (2006) Biosens Bioelectron 21:1202–1209

    Article  CAS  Google Scholar 

  13. Matsuoka H, Kosai Y, Saito M, Takeyama N, Suto H (2002) J Biotechnol 94:299–308

    Article  CAS  Google Scholar 

  14. Bier M (ed)(1959) Electrophoresis: theory, methods and applications, 3rd edn. Academic, New York

  15. Wuite GJ, Smith SB, Young M, Keller D, Bustamante C (2000) Nature 404:103–106

    Article  CAS  Google Scholar 

  16. Davenport RJ, Wuite GJ, Landick R, Bustamante C (2000) Science 287:2497–2500

    Article  CAS  Google Scholar 

  17. Seitz A, Kojima H, Oiwa K, Mandelkow E-M, Song Y-H, Mandelkow E (2002) EMBO 21:4896–4905

    Google Scholar 

  18. Lipman EA, Schuler B, Bakajin O, Eaton WA (2003) Science 301:1233–1235

    Article  CAS  Google Scholar 

  19. Xie XS, Lu HP (1999) J Biol Chem 274:15967–15970

    Article  CAS  Google Scholar 

  20. Lagally ET, Medintz I, Mathies RA (2001) Anal Chem 73:565–570

    Article  CAS  Google Scholar 

  21. Bashir R (2004) Adv Drug Deliv Rev 56:1565–1586

    Article  CAS  Google Scholar 

  22. Abgrall P, Gué A-M (2007) J Micromech Microeng 17:R15–R49

    Article  Google Scholar 

  23. Bustamante C, Bryant Z, Smith SB (2003) Nature 421:423–427

    Article  CAS  Google Scholar 

  24. Kopp MU, Crabtree HJ, Manz A (1997) Curr Opin Chem Biol 1:410–419

    Article  CAS  Google Scholar 

  25. Yi C, Li C-W, Ji S, Yang M (2006) Anal Chim Acta 560:1–23

  26. Craighead H (2006) Nature 442:387–393

    Article  CAS  Google Scholar 

  27. Yoshikawa A, Isono K (1991) Nucleic Acids Res 19:1189–1195

    Article  CAS  Google Scholar 

  28. Bajla I, Holländer I, Burg K (2001) Meas Sci Rev 1:5–10

    Google Scholar 

  29. Heller C, Pohl FM (1990) Nucleic Acids Res 18:6299–6304

    Article  CAS  Google Scholar 

  30. Jacobson SC, Ramsey JM (1996) Anal Chem 68:720–723

    Article  CAS  Google Scholar 

  31. Chen Y-H, Chen S-H (2000) Electrophoresis 21:165–170

    Article  CAS  Google Scholar 

  32. Qi S, Liu X, Ford S, Barrows J, Thomas G, Kelly K, McCandless A, Lian K, Goettert J, Soper SA (2002) Lab Chip 2:88–95

    Article  CAS  Google Scholar 

  33. Burns MA, Mastrangelo CH, Sammarcots TS, Man FP, Webster JR, Johnson BN, Foerster B, Jones D, Fields Y, Kaiser AR, Burke DT (1996) Proc Natl Acad Sci USA 93:5556–5561

    Article  CAS  Google Scholar 

  34. Woolley AT, Sensabaugh GF, Mathies RA (1997) Anal Chem 69:2181–2186

    Article  CAS  Google Scholar 

  35. Simpson PC, Roach D, Woolley AT, Thorsen T, Sensabaugh GF, Mathies RA (1998) Proc Natl Acad Sci USA 95:2256–2261

    Article  CAS  Google Scholar 

  36. Harrison DJ, Fluri K, Seiler K, Fan Z, Effenhauser CS, Manz A (1993) Science 261:895–897

    Article  CAS  Google Scholar 

  37. Chen G, Zhang L, Wang J (2004) Talanta 64:1018–1023

    Article  CAS  Google Scholar 

  38. Tan W, Fan ZH, Qiu CX, Ricco AJ, Gibbons I (2002) Electrophoresis 23:3638–3645

    Article  CAS  Google Scholar 

  39. Copois V, Bret C, Bibeau F, Brouillet JP, Del Rio M, Berthe ML, Maudelonde T, Boulle N (2003) Lab Invest 83:599–602

    Google Scholar 

  40. Chan KC, Muschik GM, Issaq HJ (2000) Electrophoresis 21:2062–2066

    Article  CAS  Google Scholar 

  41. Zhang X, Stuart JN, Sweedler JV (2004) Anal Bioanal Chem 373:332–343

    Google Scholar 

  42. Frost M, Köhler H (1998) Forensic Sci Int 92:213–218

    Article  CAS  Google Scholar 

  43. Gooijer C, Kok SJ, Ariese F (2000) Analusis 28:679–685

    Article  CAS  Google Scholar 

  44. Kim JH, Dukkipati VR, Pang SW, Larson RG (2007) Nanoscale Res Lett 2:185–201

    Article  CAS  Google Scholar 

  45. ljiro K, Matsuo Y, Shimomura M (2003) Nucleic Acids Res Suppl 3:47–48

    Google Scholar 

  46. Anselmetti D, Fritz J, Smith B, Fernandez-Busquets X (2000) Single Mol 1:53–58

    Article  CAS  Google Scholar 

  47. Allison DP, Kerper PS, Doktycz MJ, Spain JA, Modrich P, Larimer FW, Thundat T, Warmack RJ (1996) Proc Natl Acad Sci USA 93:8826–8829

    Article  CAS  Google Scholar 

  48. Bustamante C, Smith SB, Liphardt J, Smith D (2000) Curr Opin Struck Biol 10:279–285

    Article  CAS  Google Scholar 

  49. Rondelez Y, Tresset G, Tabata KV, Arata H, Fujita H, Takeuchi S, Noji H (2005) Nat Biotechnol 23:361–365

    Article  CAS  Google Scholar 

  50. Linial M, Shlomai J (1987) Proc Natl Acad Sci USA 84:8205–8209

    Article  CAS  Google Scholar 

  51. Ashkin A (1970) Phys Rev Lett 24:156–159

    Article  CAS  Google Scholar 

  52. Smith SB, Cui Y, Bustamante C (1996) Science 271:795–799

    Article  CAS  Google Scholar 

  53. Wang MD, Yin H, Landick R, Gelles J, Block SM (1997) Biophys J 72:1335–1346

    Article  CAS  Google Scholar 

  54. Koch SJ, Shundrovsky A, Jantzen BC, Wa MD (2002) Biophys J 83:1098–1105

    CAS  Google Scholar 

  55. Sakata-Sogawa K, Kurachi M, Sogawa K, Fujii-Kuriyama Y, Tashiro H (1998) Eur Biophys J 27:55–61

    Article  CAS  Google Scholar 

  56. Wong PK, Lee Y-K, Ho C-M (2003) J Fluid Mech 497:55–65

    Article  CAS  Google Scholar 

  57. Lang MJ, Fordyce PM, Block SM (2003) J Biol 2:6

    Article  Google Scholar 

  58. Tessmer I, Baumann CG, Skinner GM, Molloy JE, Hoggett JG, Tendler SJB, Allen S (2003) J Mod Opt 50:1627–1636

    CAS  Google Scholar 

  59. Bensimon D, Simon AJ, Croquette V, Bensimon A (1995) Phys Rev Lett 74:4754–4757

    Article  CAS  Google Scholar 

  60. Herrick J, Bensimon A (1999) Biochimie 81:859–871

    Article  CAS  Google Scholar 

  61. Bensimon A, Simon A, Chiffaudel A, Croquette V, Heslot F, Bensimon D (1994) Science 265:2096–2098

    Article  CAS  Google Scholar 

  62. Michalet X, Ekong R, Fougerousse F, Rousseaux S, Schurra C, Hornigold N, van Slegtenhorst M, Wolfe J, Povey S, Beckmann JS, Bensimon A (1997) Science 277:1518–1523

    Article  CAS  Google Scholar 

  63. Pasero P, Bensimon A, Schwob E (2002) Genes Dev 16:2479–2484

    Google Scholar 

  64. Devault A, Vallen EA, Yuan T, Green S, Bensimon A, Schwob E (2002) Curr Biol 12:689–694

    Article  CAS  Google Scholar 

  65. Crut A, Géron-Landre B, Bonnet I, Bonneau S, Desbiolles P, Escudé C (2005) Nucleic Acids Res 33:e98

    Article  CAS  Google Scholar 

  66. Katsura S, Harada N, Maeda Y, Komatsu J, Matsuura S-I, Takashima K, Mizuno A (2004) J Biosci Bioeng 98:293–297

    CAS  Google Scholar 

  67. Washizu M, Kurosawa O (1990) IEEE Trans Ind Appl 26:1165–1172

    Article  CAS  Google Scholar 

  68. Pohl HA (1978) Dielectrophoresis. Cambridge University Press, Cambridge, MA

    Google Scholar 

  69. Ueda M (1999) J Biochem Biophys Methods 41:153–165

    Article  CAS  Google Scholar 

  70. Bakajin OB, Duke TAJ, Chou CF, Chan SS, Austin RH, Cox EC (1998) Phys Rev Lett 80:2737–2740

    Article  CAS  Google Scholar 

  71. Oana H, Udea M, Washizu M (1999) Biochem Biophys Res Commun 265:140–143

    Article  CAS  Google Scholar 

  72. Handal MI, Ugaz VM (2006) Future Drugs 6:29–38

    CAS  Google Scholar 

  73. Weigl BH, Bardell RL, Cabrera CR (2003) Adv Drug Deliv Rev 55:349–377

    Article  CAS  Google Scholar 

  74. Dittrich PS, Tachikawa K, Manz A (2006) Anal Chem 78:3887–3908

    Article  CAS  Google Scholar 

  75. Tegenfeldt JO, Prinz C, Cao H, Chou S, Reisner WW, Riehn R, Wang YM, Cox EC, Sturm JC, Silberzan P, Austin RH (2004) Proc Natl Acad Sci USA 101:10979–10983

    Article  CAS  Google Scholar 

  76. Guo LJ, Cheng X, Chou CF (2004) Nano Lett 4:69–73

    Article  CAS  Google Scholar 

  77. Riehn R, Lu M, Wang Y-M, Lim SF, Cox EC, Austin RH (2005) Proc Natl Acad Sci USA 102:10012–10016

    Article  CAS  Google Scholar 

  78. Goodwin PM, Johnson ME, Martin JC, Ambrose WP, Marronce BL, Jett JH, Keller RA (1993) Nucleic Acids Res 21:803–806

    Article  CAS  Google Scholar 

  79. Reisner W, Morton KJ, Riehn R, Wang YM, Yu Z, Rosen M, Sturm JC, Chou SY, Frey E, Austin RH (2005) Phys Rev Lett 94:196101

    Article  CAS  Google Scholar 

  80. Lam L, Sakakihara S, Ishizuka K, Takeuchi S, Noji H (2007) Lab Chip 7:1738–1745

    Article  CAS  Google Scholar 

  81. Lam L, Ishizuka K, Sakakihara S, Noji H (2006) Proc Micro Total Anal Syst 2:1429–1431

    Google Scholar 

  82. Lam L, Sakakihara S, Ishizuka K, Takeuchi S, Noji H (2007) Proc Tech Meet Sensors Micromach 1:49–54

    Google Scholar 

  83. Lam L, Sakakihara S, Ishizuka K, Takeuchi S, Noji H (2007) Proc Micro Total Anal Syst 1:649–651

    Google Scholar 

  84. Eriksson E, Enger J, Nordlander B, Erjavec N, Ramser K, Goksor M, Hohmann S, Nystromb T, Hanstorp D (2007) Lab Chip 7:71–76

    Article  CAS  Google Scholar 

  85. Lam L, Sakakihara S, Ishizuka K, Takeuchi S, Arata HF, Fujita H, Noji H (2008) Biomed Microdev. DOI 10.1007/s10544-008-9163-x

  86. Smith SB, Finzi L, Bustamante C (1992) Science 258:1122–1126

    Article  CAS  Google Scholar 

  87. Perkins TT, Quake SR, Smith DE, Chu S (1994) Science 264:822–826

    Article  CAS  Google Scholar 

  88. Marko JF, Siggia ED (1995) Macromolecules 28:8759–8770

    Article  CAS  Google Scholar 

  89. Larson RG, Perkins TT, Smith DE, Chu S (1997) Phys Rev E 55:1794–1797

    Article  CAS  Google Scholar 

  90. Hur JS, Shaqfeh ESG (2000) J Rheol 44:713–742

    Article  CAS  Google Scholar 

  91. Sasaki N, Hayakawa I, Hikichi K, Atkins ED (2003) J Appl Polym Sci 59:1389–1394

    Article  Google Scholar 

  92. Yamashita K, Miyazaki M, Yamaguchi Y, Nakamura H, Maeda H (2007) ChemPhysChem 8:1307–1310

    Article  CAS  Google Scholar 

  93. Nishioka A, Takahashi T, Masubuchi Y, Takimoto J-I, Koyama K (2000) J Non-Newton Fluid Mech 89:287–301

    Google Scholar 

  94. Yang S, Witkoskie JB, Cao J (2003) Chem Phys Lett 377:399–405

    Article  CAS  Google Scholar 

  95. Chan EY, Goncalves NM, Haeusler RA, Hatch AJ, Larson JW, Maletta AM, Yantz GR, Carstea ED, Fuchs M, Wong GG, Gullans SR, Gilmanshin R (2004) Genome Res 14:1137–1146

    Article  CAS  Google Scholar 

  96. Otten A, Koster S, Struth B, Snigirev A, Pfohl T (2005) J Synchrotron Rad 12:745–750

    Google Scholar 

  97. Larson JW, Yantz GR, Zhong Q, Charnas R, Dantoni CM, Gallo MV, Gillis KA, Neely LA, Phillips KM, Wong GG, Gullans SR, Gilmanshin R (2006) Lab Chip 6:1187–1199

    Article  CAS  Google Scholar 

  98. Perkins TT, Smith DE, Chu S (1997) Science 276:2016–2021

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liza Lam or Hiroyuki Noji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lam, L., Iino, R., Tabata, K.V. et al. Highly sensitive restriction enzyme assay and analysis: a review. Anal Bioanal Chem 391, 2423–2432 (2008). https://doi.org/10.1007/s00216-008-2099-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2099-4

Keywords

Navigation