Skip to main content
Log in

Study of the dynamics of surface molecules by time-resolved sum-frequency generation spectroscopy

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Sum-frequency generation (SFG) is a nonlinear laser-spectroscopy technique suitable for analysis of adsorbed molecules. The sub-monolayer sensitivity of SFG spectroscopy enables vibrational spectra to be obtained with high specificity for a variety of molecules on a range of surfaces, including metals, oxides, and semiconductors. The use of ultra-short laser pulses on time-scales of picoseconds also makes time-resolved measurements possible; this can reveal ultrafast transient changes in molecular arrangements. This article reviews recent time-resolved SFG spectroscopy studies revealing site-hopping of adsorbed CO on metal surfaces and the dynamics of energy relaxation at water/metal interfaces.

Time-resolved sum frequency generation spectroscopy at surfaces with non-resonant laser pulse irradiation

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Shen YR (1984) The principles of nonlinear optics. Wiley, New York

    Google Scholar 

  2. Shen YR (1989) Nature 337:519

    Article  CAS  Google Scholar 

  3. Dai HL, Ho W (1995) (eds) Laser spectroscopy and photochemistry on metal surfaces, parts I and II. World Scientific, Singapore

    Google Scholar 

  4. Rubahn HG (1999) Laser applications in surface science and technology. Wiley, New York

    Google Scholar 

  5. Roke S, Roeterdink WG, Wijnhoven JEGJ, Petukhov AV, Kleyn AW, Bonn M (2003) Phys Rev Lett 91:258302

    Article  Google Scholar 

  6. Yeganeh MS, Dougal SM, Silbernagel BG (2006) Langmuir 22:637

    Article  CAS  Google Scholar 

  7. Bonn M, Hess Ch, Funk S, Miners JH, Persson BNJ, Wolf M, Ertl G (2000) Phys Rev Lett 84:4653

    Article  CAS  Google Scholar 

  8. Bonn M, Funk S, Hess Ch, Denzler DN, Stampfl C, Scheffler M, Wolf M, Ertl G (1999) Science 285:1042

    Article  CAS  Google Scholar 

  9. Funk S, Bonn M, Denzler DN, Hess Ch, Wolf M, Ertl G (2000) J Chem Phys 112:9888

    Article  CAS  Google Scholar 

  10. Schröder U, Guyot-Sionnest P (1999) Surf Sci 421:53

    Article  Google Scholar 

  11. Bandara A, Kubota J, Onda K, Wada A, Domen K, Hirose C (1998) J Phys Chem B 108:5948

    Article  Google Scholar 

  12. Kubota J, Wada A, Kano SS, Domen K (2003) Chem Phys Lett 377:217

    Article  CAS  Google Scholar 

  13. Kubota J, Yoda E, Ishizawa N, Wada A, Domen K, Kano SS (2003) J Phys Chem B 107:10329

    Article  CAS  Google Scholar 

  14. Kubota J, Wada A, Domen K (2005) J Phys Chem B 109:20973

    Article  CAS  Google Scholar 

  15. Kubota J, Kusafuka K, Wada A, Domen K, Kano SS (2006) J Phys Chem B 110:10785

    Article  CAS  Google Scholar 

  16. Harris AL, Rothberg L, Dhar L, Levinos NJ, Dubois LH (1991) J Chem Phys 94:2438

    Article  CAS  Google Scholar 

  17. Morin M, Levinos NJ, Harris AL (1992) J Chem Phys 96:3950

    Article  CAS  Google Scholar 

  18. Guyot-Sionnest P, Dumas P, Chabal YJ (1990) J Electron Spectrosc Relat Phenom 54:27

    Article  Google Scholar 

  19. Saß M, Lettenberger M, Laubereau A (2002) Chem Phys Lett 356:284

    Article  Google Scholar 

  20. Petek H, Weida MJ, Nagano H, Ogawa S (2000) Science 288:1402

    Article  CAS  Google Scholar 

  21. Watanabe K, Takagi N, Matsumoto Y (2005) Phys Rev B 71:085414

    Article  Google Scholar 

  22. Backus EH, Eichler A, Kleyn AW, Bonn M (2005) Science 310:1790

    Article  CAS  Google Scholar 

  23. Ueba H, Wolf M (2005) Science 310:1774

    Article  CAS  Google Scholar 

  24. Bandara A, Kano SS, Onda K, Katano S, Kubota J, Domen K, Hirose C, Wada A (2002) Bull Chem Soc Jpn 75:1125

    Article  CAS  Google Scholar 

  25. Somorjai GA (1994) Introduction to surface chemistry and catalysis. Wiley, New York

    Google Scholar 

  26. Masel RI (1996) Principles of adsorption and reaction on solid surfaces. Wiley, New York

    Google Scholar 

  27. Trenary M, Uram KJ, Bozso F, Yates JT Jr (1984) Surf Sci 146:269

    Article  CAS  Google Scholar 

  28. Persson BNJ, Ryberg R (1985) Phys Rev Lett 54:2119

    Article  CAS  Google Scholar 

  29. Persson BNJ, Ryberg R (1985) Phys Rev B 32:3586

    Article  CAS  Google Scholar 

  30. Christmann K, Schober O, Ertl G (1974) J Chem Phys 60:4719

    Article  CAS  Google Scholar 

  31. Conrad H, Ertl G, Küppers J, Latta EE (1976) Surf Sci 57:475

    Article  CAS  Google Scholar 

  32. Erley W, Wagner H, Ibach H (1979) Surf Sci 80:612

    Article  CAS  Google Scholar 

  33. Kubota J, Kano SS, Domen K, in preparation

  34. Noguchi H, Okada T, Uosaki K (2006) J Phys Chem B 110:15055

    Article  CAS  Google Scholar 

  35. Thiel PA, Madey TE (1987) Surf Sci Rep 7:211

    Article  CAS  Google Scholar 

  36. Henderson MA (2002) Surf Sci Rep 46:1

    Article  CAS  Google Scholar 

  37. Shen YR (1998) Solid State Commun 108:399

    Article  CAS  Google Scholar 

  38. Su X, Lianos L, Shen YR, Somorjai GA (1998) Phys Rev Lett 80:1533

    Article  CAS  Google Scholar 

  39. Du Q, Superfine R, Freysz E, Shen YR (1993) Phys Rev Lett 70:2313

    Article  CAS  Google Scholar 

  40. Denzler DN, Hess Ch, Dudek R, Wagner S, Frischkorn Ch, Wolf M, Ertl G (2003) Chem Phys Lett 376:618

    Article  CAS  Google Scholar 

  41. Kubota J, Wada A, Kano SS, Domen K (2002) Chem Phys Lett 362:476

    Article  CAS  Google Scholar 

  42. Ruan C-Y, Lobastov VA, Vigliotti F, Chen S, Zewail AH (2004) Science 304:80

    Article  CAS  Google Scholar 

  43. Yamakata A, Uchida T, Kubota J, Osawa M (2006) J Phys Chem 110:6427

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Kubota.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kubota, J., Domen, K. Study of the dynamics of surface molecules by time-resolved sum-frequency generation spectroscopy. Anal Bioanal Chem 388, 17–27 (2007). https://doi.org/10.1007/s00216-006-0957-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0957-5

Keywords

Navigation