Theoretical Chemistry Accounts

, Volume 104, Issue 5, pp 350–357

Efficient electronic structure calculations for systems of one-dimensional periodicity with the restricted Hartree–Fock–linear combination of atomic orbitals method implemented in Fourier space

  • I. Flamant
  • J. G. Fripiat
  • J. Delhalle
  • Frank E. Harris
Regular article

DOI: 10.1007/s002140000151

Cite this article as:
Flamant, I., Fripiat, J., Delhalle, J. et al. Theor Chem Acc (2000) 104: 350. doi:10.1007/s002140000151

Abstract.

 Formulas are presented for restricted Hartree–Fock (RHF) calculations on systems with periodicity in one dimension using a basis set of contracted spherical Gaussians. Applying Fourier-space and Ewald-type methods, all lattice sums appearing in the formulation have been brought to forms exhibiting accelerated convergence. Calculations have been carried out for infinite chains of Li2 molecules and a poly(oxymethylene) chain. The methods used here yield results that are far more precise than corresponding direct-space calculations and for the first time show the vanishing of the RHF density of states at the Fermi level for situations of partial band occupancy. Our initial computational implementation was about 5 times slower than the fastest direct-space RHF code, but improvements in special-function evaluations and numerical integrations over the Brillouin zone are shown to remove this disparity in computing speed.

Key words: Restricted HartreeFockFourier spaceGaussian-type functionsPolymersBand structure

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • I. Flamant
    • 1
  • J. G. Fripiat
    • 2
  • J. Delhalle
    • 1
  • Frank E. Harris
    • 3
  1. 1.Laboratoire Interdisciplinaire de Spectroscopie Electronique, Facultés Universitaires Notre-Dame de la Paix, Rue de Bruxelles 61, 5000 Namur, BelgiumBE
  2. 2.Laboratoire de Chimie Théorique Appliquée, Facultés Universitaires Notre-Dame de la Paix, Rue de Bruxelles 61, 5000 Namur, BelgiumBE
  3. 3.Department of Physics, University of Utah, Salt Lake City, UT 84112, USAUS
  4. 4.Quantum Theory Project, University of Florida, P.O. Box 118435, Gainesville, FL 32611, USAUS