Skip to main content
Log in

On the kinetics and thermodynamics of S–X (X = H, CH3, SCH3, COCH3, and CN) cleavage in the formation of self-assembled monolayers of alkylthiols on Au(111)

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Abounding potential technological applications is one of the many reasons why adsorption of aliphatic thiols on gold surface is a subject of intense research by many research groups. Understanding and exploring the nature of adsorbed species, the site of adsorption and the nature of interaction between adsorbed species and the gold surface using experimental and theoretical investigations is an active area of pursuit. However, despite a large number of investigations to understand the atomistic structures of thiols on Au(111), some of the basic issues are still unaddressed. For instance, there is still no clear information about the mechanism of adsorption of alkylthiol on gold surface. Furthermore, the reactivity and mechanism of adsorption of alkylthiol is likely to differ when gold adatoms and/or vacancies in the gold layers are considered. In this work, we have tackled these issues by computing the stationary states involved in the thiols adsorption in order to shed light on the kinetics aspects of adsorption process. In this respect, we have considered a variety of thiols into consideration such as methylthiol, dimethylsulfide, dimethyldisulfide, thioacetates, and thiocyanates. We have also considered the cleavage mechanism in the clean and the reconstructed surface scenario and the structure, energetics and spin densities have been computed using electronic structure calculations. For all the studied cases, an homolytic cleavage of CH3S–X (X = H, CH3, SCH3, CN, and COCH3) bond has been found to occur upon adsorption on the gold surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ulman A (1996) Chem Rev 96:1533

    Article  CAS  Google Scholar 

  2. Bumm LA, Arnold JJ, Cygan MT, Dunbar TD, Burgin TP, Jones L, Allara DL, Tour JM, Weiss PS (1996) Science 271:1705

    Article  CAS  Google Scholar 

  3. Poirier GE (1997) Chem Rev 97:1117

    Article  CAS  Google Scholar 

  4. Reed MA, Zhou C, Muller CJ, Burgin TP, Tour JM (1997) Science 278:252

    Article  CAS  Google Scholar 

  5. Ulman A (2001) Acc Chem Res 34:855

    Article  CAS  Google Scholar 

  6. Nitzan A, Ratner MA (2003) Science 300:1384

    Article  CAS  Google Scholar 

  7. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Chem Rev 105:1103

    Article  CAS  Google Scholar 

  8. Heimel G, Romaner L, Zojer E, Bredas JL (2008) Acc Chem Res 41:721

    Article  CAS  Google Scholar 

  9. Chen W, Wee ATS (2009) J Electron Spectros Relat Phenomena 172:54

    Article  CAS  Google Scholar 

  10. Kumar A, Abbott NL, Biebuyck HA, Enoc K, Whitesides GM (1995) Acc Chem Res 28:219

    Article  CAS  Google Scholar 

  11. Houston JE, Kim IH (2002) Acc Chem Res 35:547

    Article  CAS  Google Scholar 

  12. Woodruff DP (2006) Phys Chem Chem Phys 10:7211

    Article  CAS  Google Scholar 

  13. Vericat C, Vela ME, Benitez GA, Martin Gago JA, Torrelles X, Salvarezza RC (2006) J Phys Condens Matter 18:867

    Google Scholar 

  14. Dubois LH, Nuzzo RG (1992) Ann Rev Phys Chem 43:437

    Article  CAS  Google Scholar 

  15. Kramer S, Fuierer RR, Gorman CB (2003) Chem Rev 103:4367

    Article  CAS  Google Scholar 

  16. Chidsey CED, Liu G-Y, Rowntree YP, Scoles G (1989) J Chem Phys 91:4421

    Article  CAS  Google Scholar 

  17. Alves CA, Smith EL, Porter MD (1992) J Am Chem Soc 114:1222

    Article  CAS  Google Scholar 

  18. Poirier GE, Tarlov MJ, Rushneier HE (1994) Langmuir 10:3383

    Article  CAS  Google Scholar 

  19. Fenter P, Eisenberger P, Liang KS (1993) Phys Rev Lett 70:2447

    Article  CAS  Google Scholar 

  20. Camillone N, Chidsey CED, Liu G-Y, Scoles G (1993) J Phys Chem 98:3503

    Article  CAS  Google Scholar 

  21. Poirier GE, Tarlov MJ (1994) Langmuir 10:2859

    Google Scholar 

  22. Poitier GE, Pylant ED (1996) Science 272:1145

    Article  Google Scholar 

  23. Sellers H, Ulman A, Shnidman Y, Eilers JE (1993) J Am Chem Soc 115:9389

    Article  CAS  Google Scholar 

  24. Gronbeck H, Curioni A, Andreoni W (2000) J Am Chem Soc 122:3839

    Article  CAS  Google Scholar 

  25. Yourdshahyan Y, Zhang HK, Rappe AM (2001) Phys Rev B 63:81405

    Article  CAS  Google Scholar 

  26. Tachibana M, Yoshizawa K, Ogawa A, Fujimoto H, Hofmann R (2002) J Phys Chem B 106:12727

    Article  CAS  Google Scholar 

  27. Hayashi T, Morikawa Y, Nozoye H (2001) J Chem Phys 114:7615

    Article  CAS  Google Scholar 

  28. Vargas C, Giannozzi P, Selloni A, Scoles G (2001) J Phys Chem B 105:9509

    Article  CAS  Google Scholar 

  29. Gottschalck J, Hammer B (2002) J Chem Phys 116:784

    Article  CAS  Google Scholar 

  30. Molina ML, Hammer B (2002) Chem Phys Lett 360:264

    Article  CAS  Google Scholar 

  31. Morikawa Y, Liew CC, Nozoye H (2002) Surf Sci 514:389

    Article  CAS  Google Scholar 

  32. Roper MG, Skegg MP, Fisher CJ, Lee JJ, Dhank VR, Woodruff DP, Jones RG (2004) Chem Phys Lett 389:87

    Article  CAS  Google Scholar 

  33. Kondoh H, Iwasaki M, Shimada T, Amemiya K, Yokoyama T, Ohta T, Shimomura M, Kono S (2003) Phys Rev Lett 90:066102

    Article  CAS  Google Scholar 

  34. Yu M, Bovet N, Satterley CJ, Bengió S, Lovelock KRJ, Milligan PK, Jones RG, Woodruff DP, Dhanak V (2006) Phys Rev Lett 97:166102

    Article  CAS  Google Scholar 

  35. Maksymovych P, Sorescu DC, Dougherty D, Yates TY Jr (2005) J Phys Chem B 109:22463

    Article  CAS  Google Scholar 

  36. Maksymovych P, Sorescu DC, Yates TY Jr (2006) Phys Rev Lett 97:146103

    Article  CAS  Google Scholar 

  37. Grönbeck H, Häkkinen H (2007) J Phys Chem B 111:3325

    Article  CAS  Google Scholar 

  38. Mazzarello R, Cossaro A, Verdini A, Rousseau R, Casalis L, Danisman MF, Floreano L, Scandolo S, Morgante A, Scoles G (2007) Phys Rev Lett 98:016102

    Article  CAS  Google Scholar 

  39. Nogoya A, Morikawa Y (2007) J Chem Phys 19:365245

    Google Scholar 

  40. Wang J-G, Selloni A (2007) J Phys Chem C 111:12149

    Article  CAS  Google Scholar 

  41. Cossaro A, Mazzarello R, Rousseau R, Casalis L, Verdini A, Kohlmeyer A, Floreano L, Scandolo S, Morgante A, Klein ML, Scoles G (2008) Science 321:943

    Article  CAS  Google Scholar 

  42. Maksymovych P, Yates JT (2008) J Am Chem Soc 130:7518

    Article  Google Scholar 

  43. Carro P, Salvarezza R, Torres D, Illas F (2008) J Phys Chem C 112:19121

    CAS  Google Scholar 

  44. Kautz NA, Kandel SA (2008) J Am Chem Soc 130:6908

    Article  CAS  Google Scholar 

  45. Voznyy O, Dubowski JJ (2009) Langmuir 25:7353

    Article  CAS  Google Scholar 

  46. Groenbeck H, Haekkinen H, Whetten RL (2008) J Phys Chem C 112:15940

    Article  CAS  Google Scholar 

  47. Jiang D (2009) Chem Phys Lett 477:90

    Article  CAS  Google Scholar 

  48. Franke A, Pehlke E (2009) Phys Rev B 79:235441

    Article  CAS  Google Scholar 

  49. Jiang D, Dai S (2009) J Phys Chem C 113:3763

    Article  CAS  Google Scholar 

  50. Wang J, Selloni A (2009) J Phys Chem C 113:3763

    Article  CAS  Google Scholar 

  51. Chaudhuri A, Lerotholi TJ, Jackson DC, Woodruff DP, Jones RG (2009) Phys Rev B 79:195439

    Article  CAS  Google Scholar 

  52. Chaudhuri A, Lerotholi TJ, Jackson DC, Woodruff DP, Dhanak V (2009) Phy Rev Lett 102:126101

    Article  CAS  Google Scholar 

  53. Torres E, Blumenau AT, Biedermann PU (2009) Phy Rev B: Condens Matter 79:075440

    Article  CAS  Google Scholar 

  54. Voznyy O, Dubowski JJ, Yates JT, Maksymovych P (2009) J Am Chem Soc 113:12989

    Article  CAS  Google Scholar 

  55. Schlenoff JB, Li M, Ly H (1995) J Am Chem Soc 117:12528

    Article  CAS  Google Scholar 

  56. Walczak MW, Chung C, Stole SM, Widrig CA, Porter MD (1991) J Am Chem Soc 113:2370

    Article  CAS  Google Scholar 

  57. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) J Chem Soc, Chem Commun 801

  58. Thomas RC, Sun L, Crooks M (1991) Langmuir 7:620

    Article  CAS  Google Scholar 

  59. Chailapakul O, Sun L, Xu C, Crooks M (1993) J Am Chem Soc 115:12459

    Article  CAS  Google Scholar 

  60. Porter MD, Bright TB, Allara DL, Chidsey CED (1987) J Am Chem Soc 109:3559

    Article  CAS  Google Scholar 

  61. Nuzzo RG, Fusco FA, Allara DL (1987) J Am Chem Soc 109:2358

    Article  CAS  Google Scholar 

  62. Bain CD, Biebuyck HA, Whitesides GM (1989) Langmuir 5:723

    Article  CAS  Google Scholar 

  63. Nuzzo RG, Zegarski BR, Dubois LH (1987) J Am Chem Soc 109:733

    Article  CAS  Google Scholar 

  64. Nuzzo RG, Dubois LH, Allara DL (1990) J Am Chem Soc 112:558

    Article  CAS  Google Scholar 

  65. Li Y, Huang J, McIver RT Jr, Hemminger JC (1992) J Am Chem Soc 114:2428

    Article  CAS  Google Scholar 

  66. Widrig CA, Chung C, Porter MD (1991) J Electroanal Chem 310:335

    Article  CAS  Google Scholar 

  67. Bryant MA, Pemberton JE (1991) J Am Chem Soc 113:3630

    Google Scholar 

  68. Bryant MA, Pemberton JE (1991) J Am Chem Soc 113:8284

    Article  CAS  Google Scholar 

  69. Kankate L, Turchanin A, Gölzhäauser A (2009) Langmuir 25:10435

    Article  CAS  Google Scholar 

  70. Tielens F, Santos E (2010) J Phys Chem C 114:9444

    Article  CAS  Google Scholar 

  71. RzezinickaII, Lee JS, Maksymovych P, Yates JT (2005) J Phys Chem B 109:15992

  72. Hasan M, Bethell D, Brust M (2002) J Am Chem Soc 124:1132

    Article  CAS  Google Scholar 

  73. Rajaraman G, Caneschi A, Gatteschi D, Totti F (2011) Phys Chem Chem Phys 13:3886

    Article  CAS  Google Scholar 

  74. Beulen MWJ, Bugler J, Lammerink B, Geurts FAJ, Biemond EMEF, Van Leerdam KGC, Van Veggel FCJM, Engbersen JFJ, Reinhoudt DN (1998) Langmuir 14:6424

    Article  CAS  Google Scholar 

  75. Friggeri A, Schoenherr H, van Manen H-J, Huisman B-H, Vancso GJ, Huskens J, van Veggel FCJM, Reinhoudt DN (2000) Langmuir 16:7757

    Article  CAS  Google Scholar 

  76. Faull JD, Gupta VK (2002) Langmuir 18:6584

    Article  CAS  Google Scholar 

  77. Liebau M, Janssen HM, Inoue K, Shinkai S, Huskens J, Sijbesma RP, Meijer EW, Reinhoudt DN (2002) Langmuir 18:674

    Article  CAS  Google Scholar 

  78. Yamada T, Sekine R, Sawaguchi T (2000) J Chem Phys 113:1217

    Article  CAS  Google Scholar 

  79. Houmam A, Hamed EM, Hapiot P, Motto JM, Schwan AL (2003) J Am Chem Soc 125:12676

    Article  CAS  Google Scholar 

  80. Houmam A, Hamed EM, Still IWJ (2003) J Am Chem Soc 125:7258

    Article  CAS  Google Scholar 

  81. Kordis J, Gingerich KA, Seyse RJ (1974) J Chem Phys 61:5114

    Article  CAS  Google Scholar 

  82. Coi Y, Jeong Y, Chung H, Tto E, Hara M, Noh J (2008) Langmuir 24:91

    Article  CAS  Google Scholar 

  83. Dietz O, Rayon VM, Frenking G (2003) Inorg Chem 42:4977

    Article  CAS  Google Scholar 

  84. Ciszek JW, Stewart MP, Tour JM (2004) J Am Chem Soc 126:13172

    Article  CAS  Google Scholar 

  85. Singh A, Dahanayaka DH, Biswas A, Bumm L, Haltermanm RL (2010) Langmuir 26:13221

    Article  CAS  Google Scholar 

  86. Tour JM, Jones LII, Pearson DL, Lamba JJS, Burgin TP, Whitesides GM, Allara DL, Parikh AN, Atre SV (1995) J Am Chem Soc 117:9529

    Article  CAS  Google Scholar 

  87. Cai L, Yao Y, Yang J, Price DW, Tour JM (2002) Chem Mater 14:2905

    Article  CAS  Google Scholar 

  88. Stapleton JJ, Harder P, Daniel TA, Reinard MD, Yao Y, Price DW, Tour JM, Allara DL (2003) Langmuir 19:8245

    Article  CAS  Google Scholar 

  89. Park T, Kang H, Choi I, Chung H, Ito E, Hara M, Noh J (2009) Bull Korean Chem Soc 30:441

    Article  CAS  Google Scholar 

  90. Kang Y, Won D, Kim S, Seo K, Choi H, Lee G, Noh Z, Lee T, Lee C (2004) Mater Sci Eng C 24:43

    Article  CAS  Google Scholar 

  91. Béthencourt MI, Srisombat L-O, Chinwangso P, Lee TR (2009) Langmuir 25:1265

    Article  CAS  Google Scholar 

  92. Rodriguez-Douton MJ, Mannini M, Armelao L, Barra A-L, Tancini E, Sessoli R, Cornia A (2011) Chem Commun 47:1467

    Article  CAS  Google Scholar 

  93. Park T, Kang H, Kim Y, Lee S, Noh J (2011) Bull Korean Chem Soc 32:39

    Article  CAS  Google Scholar 

  94. Noh J, Murase T, Nakajima K, Lee H, Hara M (2000) J Phys Chem B 104:7411

    Article  CAS  Google Scholar 

  95. Jung C, Dannenberger O, Xu Y, Buck M, Grunze M (1998) Langmuir 14:1103

    Article  CAS  Google Scholar 

  96. Lee H, He Z, Hussey CL, Mattern DL (1998) Chem Mater 10:4148

    Article  CAS  Google Scholar 

  97. Leavy MC, Bhattacharyya S, Cleland WE Jr, Hussey CL (1999) Langmuir 15:6582

    Article  CAS  Google Scholar 

  98. Takiguchi H, Sato K, Ishida T, Abe K, Yase K, Tamada K (2000) Langmuir 16:1703

    Article  CAS  Google Scholar 

  99. Noh J, Kato HS, Kawai M, Hara M (2002) J Phys Chem B 106:13268

    Article  CAS  Google Scholar 

  100. Beulen MWJ, Huisman B-H, van der Heijden PA, van Veggel FCJM, Simons MG, Biemond EMEF, de Lange PJ, Reinhoudt DN (1996) Langmuir 12:6170

    Article  CAS  Google Scholar 

  101. Noh J, Nakamura F, Kim J, Lee H, Hara M (2002) Mol Cryst Liq Cryst 377:165

    CAS  Google Scholar 

  102. Schoenherr H, Vancso GJ, Huisman B-H, Van Veggel FCJM, Reinhoudt DN (1999) Langmuir 15:5541

    Article  CAS  Google Scholar 

  103. Zhong C-J, Porter MD (1994) J Am Chem Soc 116:11616

    Article  CAS  Google Scholar 

  104. Zhong C-J, Brush RC, Anderegg J, Porter MD (1999) Langmuir 15:518

    Article  CAS  Google Scholar 

  105. Roper MG, Jones RG (2008) Phys Chem Chem Phys 10:1336

    Article  CAS  Google Scholar 

  106. Cometto FP, Macagno VA, Paredes-Olivera P, Patrito EM, Ascolani H, Zampieri G (2010) J Phys Chem C 114:10183

    Article  CAS  Google Scholar 

  107. Khayankarn O, Pearson RA, Verghese N, Shafi A (2005) J Adhes 81:941

    Article  CAS  Google Scholar 

  108. Béthencourt MI, Barriet D, Frangi NM, Lee TR (2005) J Adhes 81:1031

    Article  CAS  Google Scholar 

  109. Colorado R Jr, Lee TR (2003) Langmuir 19:3288

    Google Scholar 

  110. Zhang X, Chabal YJ, Christman SB, Chaban EE, Garfunkel E (2001) J Vac Sci Technol A 19:1725

    Article  CAS  Google Scholar 

  111. Cai L, Yao Y, Yang J, Price DW, Tour JM (2002) Chem Mater 14:2905

  112. Béthencourt MI, Srisombat L-o, Chinwangso P, Lee TR (2009) Langmuir 25:1265

    Google Scholar 

  113. Bencini A, Rajaraman G, Totti F, Tusa M (2009) Superlattices Microstruct 46:4

    Article  CAS  Google Scholar 

  114. Rajaraman G, Caneschi A, Gatteschi D, Totti F (2010) J Mat Chem 20:10747

    Article  CAS  Google Scholar 

  115. Jaguar 7.0, Schrödinger, Portland, OR 97204

  116. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  117. Stephens PJ, Devlin FJ, Chabalowski CS, Frisch MJ (1994) J Phys Chem 98:11623

    Article  CAS  Google Scholar 

  118. Hay PJ, Wadt WR (1985) J Chem Phys 82:270

    Article  CAS  Google Scholar 

  119. Hay PJ, Wadt WR (1985) J Chem Phys 82:284

    Article  Google Scholar 

  120. Hay PJ, Wadt WR (1985) J Chem Phys 82:299

    Article  CAS  Google Scholar 

  121. Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213

    Article  CAS  Google Scholar 

  122. Francl MM, Petro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, Pople JA (1982) J Chem Phys 77:3654

    Article  CAS  Google Scholar 

  123. Rassolov V, Pople JA, Ratner M, Windus TL (1998) J Chem Phys 109:1223

    Article  CAS  Google Scholar 

  124. Schaftenaar G, Noordik JH (2000) Molden: a pre- and post-processing program for molecular and electronic structures. J Comput Aided Mol Design 14:1

    Article  Google Scholar 

  125. Mundy CJ, Mohamed F, Schiffman F, Tabacchi G, Forbert H, Kuo W, Hutter J, Krack M, Iannuzzi M, McGrath M, Guidon M, Kuehne TD, Laino T, VandeVondele J, Weber V (2000) CP2K software package, http://cp2k.berlios.de

  126. VandeVondele J, Krack M, Mohamed F, Parrinello M, Chassaing T, Hutter J (2005) Comput Phys Commun 167:103

    Article  CAS  Google Scholar 

  127. Lippert G, Hutter J, Parrinello M (1997) Mol Phys 92:477

    CAS  Google Scholar 

  128. Lippert G, Hutter J, Parrinello M (1999) Theor Chem Acc 103:124

    CAS  Google Scholar 

  129. Kong B, Kim Y, Choi SI (2008) Bull Korean Chem Soc 29:1843

    Article  CAS  Google Scholar 

  130. Cometto FP, Macagno VA, Paredes-Olivera P, Patrito EM, Ascolani H, Zampieri, G (2010) J Phys Chem C 114:10183

    Google Scholar 

  131. Kim KL, Lee SJ, Kim K (2004) J Phys Chem B 108:9216

    Article  CAS  Google Scholar 

  132. Baadji N, Piacenza M, Tugsuz T, Della SF, Maruccio G, Sanvito S (2009) Nat Mater 8:813

    Article  CAS  Google Scholar 

  133. Zulczewski G, Sanvito S, Coey M (2009) Nat Mater 8:693

    Article  CAS  Google Scholar 

  134. Zhang R, Ma G, Li R, Qian Z, Shen Z, Zhao X, Hou S, Sanvito S (2009) J Phys Condens Matter 21:335301

    Google Scholar 

  135. Giusti A, Charron G, Mazerat S, Compain J-D, Mialane P, Dolbecq A, Riviere E, Wernsdorfer W, Ngo B, Keita B, Nadjo L, Filoramo A, Bourgoin J-P, Mallah T (2009) Angew Chem Int Ed 48:4949

    Article  CAS  Google Scholar 

  136. Wernsdorfer W (2009) Nat Nanotechnol 4:145

    Article  CAS  Google Scholar 

  137. Bogani L, Wernsdorfer W (2008) Nat Mater 7:179

    Article  CAS  Google Scholar 

Download references

Acknowledgments

GR would like to acknowledge the financial support from the Government of India through Department of Science and Technology (SR/S1/IC-41/2010) and generous computational resources from Indian Institute of Technology Bombay. MJ thanks Indian Institute of Technology Bombay for financial support through Institute Post Doctoral Fellowship. FT acknowledges FP7-STREP: MOLSPINQIP–ICT-211284 ‘Molecular Spin Clusters for Quantum Information Processing’, ERC-2010-AdG—no 267746 MolNanoMaS—’Molecular Nanomagnets at Surfaces: Novel Phenomena for Spin-based Technologies’, and PRIN 2008—FZK5AC, ‘Strutture molecolari e nanocristalline con funzionalità magnetiche, foto-magnetiche e foto-emettitrici e loro organizzazione su superfici, in film polimerici o in sol–gel’.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gopalan Rajaraman or Federico Totti.

Additional information

Dedicated to Professor Vincenzo Barone and published as part of the special collection of articles celebrating his 60th birthday.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 33 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaccob, M., Rajaraman, G. & Totti, F. On the kinetics and thermodynamics of S–X (X = H, CH3, SCH3, COCH3, and CN) cleavage in the formation of self-assembled monolayers of alkylthiols on Au(111). Theor Chem Acc 131, 1150 (2012). https://doi.org/10.1007/s00214-012-1150-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-012-1150-x

Keywords

Navigation