, 131:1088

Proton-bound homodimers involving second-row atoms

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

High-level ab initio quantum chemical calculations (G4(MP2)//MP2/6-311+G(2df,p)) have been used to examine homodimers of second-row bases, and to compare the results with those obtained previously for the first-row analogs. The relationship between the binding energies of the dimers and the proton affinities (PAs) of the bases follows the same pattern as that for the first-row systems, with the binding energies initially increasing with increasing proton affinity but subsequently decreasing. This may be attributed to the opposing effects of increased PA on the hydrogen-bond donor and hydrogen-bond acceptor. The binding energies are generally smaller for the second-row dimers than for the corresponding first-row dimers. There is an increased tendency for asymmetrical hydrogen bonds in homodimers of the second-row compared with first-row dimers. This may be attributed to the lower electronegativities of second-row atoms relative to their first-row counterparts, and to the longer internuclear separation between the hydrogen-bonded second-row atoms.

Dedicated to Professor Eluvathingal Jemmis and published as part of the special collection of articles celebrating his 60th birthday.