Skip to main content
Log in

Theoretical investigation of photoelectron spectra and magnetically induced current densities in ring-shaped transition-metal oxides

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The molecular structures of cyclic group 6 transition-metal (M = Cr, Mo, W, Sg) oxides (M 3O 0/1−/2−9 ) species have been optimized at density functional theory (DFT) levels. The photoelectron spectra (PES) of M 3O 9 (M = Cr, Mo, W) were calculated at the time-dependent DFT and approximate coupled-cluster singles doubles (CC2) levels and compared with experimental results. The CC2 calculations did not yield any reliable PES, whereas the molecular structures can be identified by comparing PES obtained at the DFT level with experiment. Magnetically induced current densities were calculated at the DFT level using the gauge-including magnetically induced current (gimic) approach. The current strengths and current pathways of the neutral M3O9 and the dianionic M3O 2−9 (M = Cr, Mo) oxides were investigated and analyzed with respect to a previous prediction of d-orbital aromaticity for Mo3O9 anions. Current-density calculations provide ring-current strengths that are used to assess the degree of aromaticity. Comparison of current-density calculations and calculations of nucleus-independent chemical shifts (NICS) shows that NICS calculations are not a reliable tool for determining the degree of aromaticity of the metal oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Huang X, Zhai HJ, Kiran B, Wang LS (2005) Angew Chem Int Ed 44:7251. doi:10.1002/anie.200502678

    Article  CAS  Google Scholar 

  2. Huang X, Zhai HJ, Li J, Wang LS (2006) J Phys Chem A 110:85

    Article  CAS  Google Scholar 

  3. Zhai HJ, Li S, Dixon DA, Wang LS (2008) J Am Chem Soc 130:5167

    Article  CAS  Google Scholar 

  4. Huang X, Zhai HJ, Waters T, Li J, Wang LS (2006) Angew Chem Int Ed 45:657

    Article  CAS  Google Scholar 

  5. Zhai HJ, Averkiev BB, Zubarev DY, Wang LS, Boldyrev AI (2007) Angew Chem Int Ed 46:4277. doi:10.1002/anie.200700442

    Article  CAS  Google Scholar 

  6. Rothgeb DW, Hossain E, Kuo AT, Troyer JL, Jarrold CC (2009) J Chem Phys 131:044310. doi:10.1063/1.3180825

    Article  Google Scholar 

  7. Mayhall NJ, Rothgeb DW, Hossain E, Raghavachari K, Jarrold CC (2009) J Chem Phys 130:124313. doi:10.1063/1.3100782

    Article  Google Scholar 

  8. Li S, Zhai HJ, Wang LS, Dixon DA (2009) J Phys Chem A 113:11273. doi:10.1021/jp9082008

    Article  CAS  Google Scholar 

  9. Zhai HJ, Wang B, Huang X, Wang LS (2009) J Phys Chem A 113:9804. doi:10.1021/jp905478w

    Article  CAS  Google Scholar 

  10. Zhai HJ, Wang B, Huang X, Wang LS (2009) J Phys Chem A 113:3866. doi:10.1021/jp809945n

    Article  CAS  Google Scholar 

  11. Chen WJ, Zhai HJ, Zhang YF, Huang X, Wang LS (2010) J Phys Chem A 114:5958. doi:10.1021/jp102439v

    Article  CAS  Google Scholar 

  12. Averkiev BB, Boldyrev AI (2007) J Phys Chem Lett 111:12864. doi:10.1021/jp077528b

    CAS  Google Scholar 

  13. Wang B, Chen WJ, Zhao BC, Zhang YF, Huang X (2010) J Phys Chem A 114:1964. doi:10.1021/jp909676s

    Article  CAS  Google Scholar 

  14. Mayhall NJ, Becher EL III, Chowdhury A, Raghavachari K (2011) J Phys Chem A 115:2291. doi:10.1021/jp108344k

    Article  CAS  Google Scholar 

  15. Foroutan-Nejad C, Shahbazian S, Parviz-Ranjbar P (2011) Phys Chem Chem Phys 13:4576. doi:10.1039/C0CP01519A

    Article  CAS  Google Scholar 

  16. Gong Y, Zhou M (2009) Chem Rev 109:6765. doi:10.1021/cr900185x

    Article  CAS  Google Scholar 

  17. Böhme DK, Schwarz H (2005) Angew Chem Int Ed 44:2336

    Article  Google Scholar 

  18. King RB (1991) Inorg Chem 30:4437. doi:10.1021/ic00023a030

    Article  CAS  Google Scholar 

  19. Wannere CS, Corminboeuf C, Wang ZX, Wodrich MD, King RB, von Ragué Schleyer P (2005) J Am Chem Soc 127:5701

    Article  CAS  Google Scholar 

  20. Lin YC, Sundholm D, Jusélius J, Cui LF, Li X, Zhai HJ, Wang LS (2006) J Phys Chem A 110:4244

    Article  CAS  Google Scholar 

  21. Li X, Kuznesov AE, Zhang HF, Boldyrev AI, Wang LS (2001) Science 291:859

    Article  CAS  Google Scholar 

  22. Kuznetsov AE, Boldyrev AI, Li X, Wang LS (2001) J Am Chem Soc 123:8825

    Article  CAS  Google Scholar 

  23. Kuznetsov AE, Birch KA, Boldyrev AI, Li X, Zhai HJ, Wang LS (2003) Science 300:622

    Article  CAS  Google Scholar 

  24. Chen Z, Corminboeuf C, Heine T, Bohmann J, von Ragué Schleyer P (2003) J Am Chem Soc 125:13930

    Article  CAS  Google Scholar 

  25. Havenith RWA, Fowler PW, Steiner E, Shetty S, Kanhere D, Pal S (2004) Phys Chem Chem Phys 6:285

    Article  CAS  Google Scholar 

  26. Ritter SK (2003) Chem Eng News 81(50):23

    Article  Google Scholar 

  27. Lin YC, Jusélius J, Sundholm D, Gauss J (2005) J Chem Phys 122:214308

    Article  Google Scholar 

  28. Jusélius J, Sundholm D, Gauss J (2004) J Chem Phys 121:3952

    Article  Google Scholar 

  29. Fliegl H, Sundholm D, Taubert S, Jusélius J, Klopper W (2009) J Phys Chem A 113:8668. doi:10.1021/jp9029776

    Article  CAS  Google Scholar 

  30. Islas R, Heine T, Merino G (2007) J Chem Theory Comput 3:775

    Article  CAS  Google Scholar 

  31. Johansson MP, Jusélius J, Sundholm D (2005) Angew Chem Int Ed 44:1843

    Article  CAS  Google Scholar 

  32. Johansson MP, Jusélius J (2005) Lett Org Chem 2:469

    Article  CAS  Google Scholar 

  33. Lin YC, Sundholm D, Jusélius J (2006) J Chem Theory Comput 2:761

    Article  CAS  Google Scholar 

  34. Jusélius J, Sundholm D (2008) Phys Chem Chem Phys 10:6630

    Article  Google Scholar 

  35. Taubert S, Jusélius J, Sundholm D, Klopper W, Fliegl H (2008) J Phys Chem A 112:13584

    Article  CAS  Google Scholar 

  36. Taubert S, Sundholm D, Pichierri F (2009) J Org Chem 74:6495

    Article  CAS  Google Scholar 

  37. Taubert S, Sundholm D, Pichierri F (2010) J Org Chem 75:5867. doi:10.1021/jo100902w

    Article  CAS  Google Scholar 

  38. Taubert S, Kaila VRI, Sundholm D (2011) Int J Quant Chem 111:848. doi:10.1002/qua.22869

    Article  CAS  Google Scholar 

  39. Fliegl H, Sundholm D, Taubert S, Pichierri F (2010) J Phys Chem A 114:7153. doi:10.1021/jp1021517

    Article  CAS  Google Scholar 

  40. Fliegl H, Lehtonen O, Sundholm D, Kaila VRI (2010) Phys Chem Chem Phys 13:434. doi:10.1039/C0CP00622J

    Article  Google Scholar 

  41. von Ragué Schleyer P, Maerker C, Dransfeld A, Jiao H, van Eikema Hommes NJR (1996) J Am Chem Soc 118:6317

    Article  Google Scholar 

  42. Jusélius J, Sundholm D (1999) Phys Chem Chem Phys 1:3429

    Article  Google Scholar 

  43. Morao I, Cossío FP (1999) J Org Chem 64:1868. doi:10.1021/jo981862+

    Article  CAS  Google Scholar 

  44. Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C (1989) Chem Phys Lett 162:165. Current version: see http://www.turbomole.com

  45. Tao J, Perdew JP, Staroverov VN, Scuseria GE (2003) Phys Rev Lett 91:1464011

    Article  Google Scholar 

  46. Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297

    Article  CAS  Google Scholar 

  47. Furche F, Perdew JP (2006) J Chem Phys 124:044103. doi:10.1063/1.2162161

    Article  Google Scholar 

  48. Andrae D, Häussermann U, Dolg M, Stoll H, Preuss H (1990) Theor Chim Acta 77:123

    Article  CAS  Google Scholar 

  49. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  50. te Velde G, Bickelhaupt FM, van Gisbergen SJA, Fonseca Guerra C, Baerends EJ, Snijders JG, Ziegler T (2001) J Comp Chem 22:931

    Article  CAS  Google Scholar 

  51. Fonseca Guerra C, Snijders JG, te Velde G, Baerends EJ (1998) Theor Chem Acc 99:391

    Article  Google Scholar 

  52. Baerends EJ, Ziegler T, Autschbach J, Bashford D, Bérces A, Bickelhaupt FM, Bo C, Boerrigter PM, Cavallo L, Chong DP, Deng L, Dickson RM, Ellis DE, van Faassen M, Fan L, Fischer TH, Fonseca Guerra C, Ghysels A, Giammona A, van Gisbergen SJA, Götz AW, Groeneveld JA, Gritsenko OV, Grüning M, Gusarov S, Harris FE, van den Hoek P, Jacob CR, Jacobsen H, Jensen L, Kaminski JW, van Kessel G, Kootstra F, Kovalenko A, Krykunov MV, van Lenthe E, McCormack DA, Michalak A, Mitoraj M, Neugebauer J, Nicu VP, Noodleman L, Osinga VP, Patchkovskii S, Philipsen PHT, Pye DPCC, Ravenek W, Rodríguez JI, Ros P, Schipper PRT, Schreckenbach G, Seldenthuis JS, Seth M, Snijders JG, Sola M, Swart M, Swerhone D, te Velde G, Vernooijs P, Versluis L, Visscheri L, Visser O, Wang F, Wesolowski TA, van Wezenbeek EM, Wiesenekker G, Wolff SK, Woo TK, Yakovlev AL. ADF2010, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com

  53. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200

    Article  CAS  Google Scholar 

  54. Perdew JP (1986) Phys Rev B 33:8822

    Article  Google Scholar 

  55. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  56. van Leeuwen R, van Lenthe E, Baerends EJ, Snijders JG (1994) J Chem Phys 101:1272

    Article  Google Scholar 

  57. Christiansen O, Koch H, Jørgensen P (1995) Chem Phys Lett 243:409

    Article  CAS  Google Scholar 

  58. Hättig C, Weigend F (2000) J Chem Phys 113:5154

    Article  Google Scholar 

  59. Hättig C, Köhn A (2002) J Chem Phys 117:6939

    Article  Google Scholar 

  60. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  61. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  62. Weigend F, Häser M, Patzelt H, Ahlrichs R (1998) Chem Phys Lett 294:143

    Article  CAS  Google Scholar 

  63. Furche F, Ahlrichs R (2002) J Chem Phys 117:7433

    Article  CAS  Google Scholar 

  64. Furche F, Ahlrichs R (2004) J Chem Phys 121:12772

    Article  CAS  Google Scholar 

  65. Kohout M (2005) Programs DGrid and Basin. http://www.scm.com/News/DGrid.html

  66. Kohout M (2004) Int J Quant Chem 97:651

    Article  CAS  Google Scholar 

  67. Wolinski K, Hinton JF, Pulay P (1990) J Am Chem Soc 112:8251

    Article  CAS  Google Scholar 

  68. Häser M, Ahlrichs R, Baron HP, Weis P, Horn H (1992) Theor Chim Acta 83:455

    Article  Google Scholar 

  69. Kollwitz M, Häser M, Gauss J (1998) J Chem Phys 108:8295

    Article  CAS  Google Scholar 

  70. Ahlrichs R, May K (2000) Phys Chem Chem Phys 2:943

    Article  CAS  Google Scholar 

  71. Li S, Dixon DA (2007) J Phys Chem A 111:11093

    Article  CAS  Google Scholar 

  72. Pyykkö P, Riedel S, Patzschke M (2005) Chem Eur J 11:3511

    Article  Google Scholar 

  73. Jusélius J, Sundholm D (2001) Phys Chem Chem Phys 3:2433

    Article  Google Scholar 

  74. Chen Z, Wannere CS, Corminboeuf C, Puchta R, von Ragué Schleyer P (2005) Chem Rev 105:3842

    Article  CAS  Google Scholar 

  75. Pyykkö P, Desclaux JP (1978) Chem Phys 34:261

    Article  Google Scholar 

  76. Sundholm D, Pyykkö P, Laaksonen L (1985) Finn Chem Lett 51–55

  77. El-Issa BD, Pyykkö P, Zanati HM (1991) Inorg Chem 30:2781

    Article  CAS  Google Scholar 

  78. Pyykkö P, Tamm T (1997) J Phys Chem A 101:8107

    Article  Google Scholar 

  79. Pyykkö P, Runeberg N (2002) Angew Chem Int Ed 41:2174

    Article  Google Scholar 

  80. Gagliardi L, Pyykkö P (2004) Phys Chem Chem Phys 6:2904. doi:10.1039/b404255g

    Article  CAS  Google Scholar 

  81. Autschbach J, Hess BA, Johansson MP, Neugebauer J, Patzschke M, Pyykkö P, Reiher M, Sundholm D (2004) Phys Chem Chem Phys 6:11

    Article  CAS  Google Scholar 

  82. Manninen K, Pyykkö P, Häkkinen H (2005) Phys Chem Chem Phys 7:2208

    Article  CAS  Google Scholar 

  83. Johansson MP, Pyykkö P (2010) Chem Commun 46:3762. doi:10.1039/c0cc0045k

    Article  CAS  Google Scholar 

  84. Laaksonen L (1992) J Mol Graph 10:33

    Article  CAS  Google Scholar 

  85. Bergman DL, Laaksonen L, Laaksonen A (1997) J Mol Graph Model 15:301

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research has been supported by the Academy of Finland through its Centers of Excellence Programme 2006–2011 and by Postdoctoral Researcher’s project (126905). H. F. was funded from the Research Grant Motions in Macromolecular Function: New Approaches to Visualize and Simulate Protein Flexibility, awarded 2008 by the Human Frontier of Science Program (HFSP). We thank CSC – the Finnish IT Center for Science for computer time. This article is dedicated to Prof. Pekka Pyykkö on his 70th birthday. The research interests of Prof. Pyykkö comprise relativistic effects and computational inorganic chemistry. He has published nine articles on studies of Cr, Mo, and W compounds showing his interest in the chromium, molybdenum, and tungsten chemistry [7583].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heike Fliegl.

Additional information

Dedicated to Professor Pekka Pyykkö on the occasion of his 70th birthday and published as part of the Pyykkö Festschrift Issue.

Electronic supplementary material

Below is the link to the electronic supplementary material.

PDF (16629 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fliegl, H., Lehtonen, O., Lin, YC. et al. Theoretical investigation of photoelectron spectra and magnetically induced current densities in ring-shaped transition-metal oxides. Theor Chem Acc 129, 701–713 (2011). https://doi.org/10.1007/s00214-011-0946-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-011-0946-4

Keywords

Navigation