Skip to main content
Log in

Electronic structure and optical properties of chelating heteroatomic conjugated molecules: a SAC-CI study

Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The electronic structure and optical properties of 13 chelating heteroatomic conjugated molecules such as pyridine, benzoxazole, and benzothiazole derivatives, which are used as C–N ligands in organometallic compounds, have been investigated. The geometries of the ground and first excited states were obtained by the DFT and CIS methods, respectively, followed by the SAC-CI calculations of the transition energies for absorption and emission. For six compounds whose experimental data are available, the SAC-CI calculations reproduced the experimental values satisfactorily with deviations of less than 0.3 eV for absorption and 0.1 eV for emission except for benzoxazoles. For other molecules, the theoretical absorption and emission spectra were predicted. The lowest ππ* excited-state geometries was calculated to be planar for most of the molecules with two or three conjugated rings connected by single bond. The geometry change due to the ππ* excitation was qualitatively interpreted by electrostatic force theory based on SAC/SAC-CI electron density difference. The excitations are relatively localized in the central region and in the lowest ππ* excited state, the inter-ring single bond shows large change, with a contraction of 0.05–0.09 Å. The present calculations provide reliable information regarding the energy levels of these chelating heteroatomic conjugated compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Kalle C (1962) Brirtish Patent 895001

  2. Mori A, Sekiguchi A, Masui K, Shimada T, Horie M, Osakada K, Kawamoto M, Ikeda T (2003) J Am Chem Soc 102:1700

    Article  Google Scholar 

  3. Williams DL, Heller A (1970) J Phys Chem 74:4473

    Article  Google Scholar 

  4. Barbara PF, Brus LE, Rentzepis PM (1980) J Am Chem Soc 102:5631

    Article  CAS  Google Scholar 

  5. Mishra AK, Dogra SK (1985) Bull Chem Soc Jpn 58:3587

    Article  CAS  Google Scholar 

  6. Becker RS, Lenolele C, Zein A (1987) J Phys Chem 91:3509

    Article  CAS  Google Scholar 

  7. Lamansky S, Djurovich P, Murphy D, Abdel-Razzaq F, Kwong R, Tsyba I, Bortz M, Mui B, Bau R, Thompson ME (2001) Inorg Chem 40:1704

    Article  CAS  Google Scholar 

  8. Lamansky S, Djurovich P, Murphy D, Abdel-Razzaq F, Lee HF, Adachi C, Burrows PE, Forrest SR, Thompson ME (2001) J Am Chem Soc 123:4304

    Article  CAS  Google Scholar 

  9. Brooks J, Babayan Y, Lamansky S, Djurovich PI, Tsyba I, Bau R, Thompson ME (2002) Inorg Chem 41:3055

    Article  CAS  Google Scholar 

  10. Segal G, Pople JA (1966) J Chem Phys 44:3289

    Article  Google Scholar 

  11. Casida ME, Jamorski C, Casida KC, Salahub DR (1998) J Chem Phys 108:4439

    Article  CAS  Google Scholar 

  12. Nakatsuji H, Hirao K (1978) J Chem Phys 68:2053

    Article  CAS  Google Scholar 

  13. Nakatsuji H (1978) Chem Phys Lett 59:362

    Article  CAS  Google Scholar 

  14. Nakatsuji H (1979) Chem Phys Lett 67:329

    Article  CAS  Google Scholar 

  15. Nakatsuji H (1992) Acta Chim Acad Sci Hung 129:719

    CAS  Google Scholar 

  16. Nakatsuji H, Kitao O, Yonezawa T (1985) J Chem Phys 83:723

    Article  CAS  Google Scholar 

  17. Wan J, Hada M, Ehara M, Nakatsuji H (2001) J Chem Phys 114:5117

    Article  CAS  Google Scholar 

  18. Wan J, Meller J, Hada M, Ehara M, Nakatsuji H (2000) J Chem Phys 113:7853

    Article  CAS  Google Scholar 

  19. Poolmee P, Ehara M, Hannongbua S, Nakatsuji H (2005) Polymer 46:6474

    Article  CAS  Google Scholar 

  20. Saha B, Ehara M, Nakatsuji H (2007) J Phys Chem A 111:5473

    Article  CAS  Google Scholar 

  21. Fukuda R, Nakatsuji H (2008) J Chem Phys 128:094105

    Article  Google Scholar 

  22. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  23. Becke AD (1993) J Chem Phys 98:1372

    Article  CAS  Google Scholar 

  24. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  25. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:640

    Google Scholar 

  26. McLean AD, Chandler GS (1980) J Chem Phys 72:5639

    Article  CAS  Google Scholar 

  27. Foresman JB, Head-Gordon M, Pople JA (1992) J Phys Chem 96:135

    Article  CAS  Google Scholar 

  28. Dunning TH Jr, Hay PJ (1976) In: Schaefer HF III (ed) Modern theoretical chemistry, vol 2. Plenum, New York

    Google Scholar 

  29. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Chesseman JR et al (2004) Gaussian 03. Gaussian Inc., Wallingford

    Google Scholar 

  30. Nakatsuji H (1973) J Am Chem Soc 95:345

    Article  CAS  Google Scholar 

  31. Nakatsuji H, Koga T (1981) The force concept in chemistry. Van Nostrand Reinhold, New York

    Google Scholar 

  32. Krumholz P (1951) J Am Chem Soc 73:3487

    Article  CAS  Google Scholar 

  33. Pohlers G, Virdee S, Scaiano JC, Sinta R (1996) Chem Matter 8:2654

    Article  CAS  Google Scholar 

  34. Burrell GJ, Hurtubise RJ (1988) Anal Chem 60:2178

    Article  CAS  Google Scholar 

  35. Drefahl G, Engelmann U (1960) Chem Ber 93:492

    Article  CAS  Google Scholar 

  36. Gruzinskii VV, Danilova VI, Kopylova TN, Maier VG, Shalaev VK (1981) Sov J Quantum Electron 11:1029

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. R. Fukuda and Prof. H. Nakatsuji for the direct SAC-CI program code. They also thank the reviewers for the valuable comments. This study was supported by the JSPS Exchange Program for East Asian Young Researchers. M.E. was supported by the grant from the JST-CREST, Scientific Research in Priority Areas “Molecular Theory for Real Systems” from the Ministry of Education, Culture, Sports, Science and Technology of Japan, the Next Generation Supercomputing Project, and the Molecular-Based New Computational Science Program, NINS. A part of the computations were performed at Research Center for Computational Science, Okazaki, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Ehara.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 130 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, YP., Ehara, M. Electronic structure and optical properties of chelating heteroatomic conjugated molecules: a SAC-CI study. Theor Chem Acc 124, 395–408 (2009). https://doi.org/10.1007/s00214-009-0629-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-009-0629-6

Keywords

Navigation