Electronic structures of tetragonal nitrido and nitrosyl metal complexes Authors Patrick Hummel California Institute of Technology Jay R. Winkler California Institute of Technology Harry B. Gray California Institute of Technology Regular Article
First Online: 12 January 2007 Received: 13 August 2006 Accepted: 08 November 2006 DOI :
10.1007/s00214-006-0236-8
Cite this article as: Hummel, P., Winkler, J.R. & Gray, H.B. Theor Chem Account (2008) 119: 35. doi:10.1007/s00214-006-0236-8 Abstract The standard oxidation states of central metal atoms in C 4v nitrido ([M(N)(L)5 ]z ) complexes are four units higher than those in corresponding nitrosyls ([M(NO)(L)5 ]z ) (L=CN: z = 3−, M = Mn, Tc, Re; z = 2−, M = Fe, Ru, Os; L = NH3 : z = 2+, M = Mn, Tc, Re; z = 3+, M = Fe, Ru, Os). Recent work has suggested that [Mn(NO)(CN)5 ]3− behaves electronically much closer to Mn(V)[b 2 (xy )]2 , the ground state of [Mn(N)(CN)5 ]3− , than to Mn(I)[b 2 (xy )]2 [e (xz ,yz )]4 . We have employed density functional theory and time-dependent density functional theory to calculate the properties of the ground states and lowest-lying excitations of [M(N)(L)5 ]z and [M(NO)(L)5 ]z . Our results show that [M(N)(L)5 ]z and [M(NO)(L)5 ]z complexes with the same z value have strikingly similar electronic structures.
Keywords Density functional theory Time dependent density functional theory Electronic structures Nitrido Nitric oxide
References 1.
Enemark JH, Feltham RD (1974). Coord Chem Rev 13:339
CrossRef 2.
Bendix J, Meyer K, Weyhermüller T, Bill E, Meltzer-Nolte N, Wieghardt K (1998). Inorg Chem 37:1767
CrossRef 3.
Hummel P, Gray HB (2006) Coord Chem Rev (accepted)
4.
Ahlrichs R, Bär M, Baron HP, Bauernschmitt R, Böcker S, Deglmann P, Ehrig M, Eichkorn K, Elliott S, Furche F, Haase F, Häser M, Horn H, Hättig C, Huber C, Huniar U, Kattannek M, Köhn A, Kölmel C, Kollwitz M, May K, Ochsenfeld C, Öhm H, Patzelt H, Rubner O, Schäfer A, Schneider U, Sierka M, Treutler O, Unterreiner B, von Arnim M, Weigend F, Weis P, Weiss H (2004) TURBOMOLE V5-7, Quantum Chemistry Group, University of Karlsruhe, Karlsruhe
5.
Schäfer A, Huber C, Ahlrichs R (1994). J Chem Phys 100:5829
CrossRef 6.
Andrae D, Haeussermann U, Dolg M, Stoll H, Preuss H (1990). Theor Chim Acta 77:123
CrossRef 7.
Dirac PAM (1929). Proc Royal Soc (London) A 123:714
CrossRef 8.
Slater JC (1951). Phys Rev 81:385
CrossRef 9.
Vosko SH, Wilk L, Nusair M (1980). Can J Phys 58:1200
CrossRef 10.
Perdew JP, Wang Y (1992). Phys Rev B 45:13244
CrossRef 11.
Becke AD (1988). Phys Rev A 38:3098
CrossRef 12.
Lee C, Yang W, Parr RG (1988). Phys Rev B 37:785
CrossRef 13.
Perdew JP (1986). Phys Rev B 33:8822
CrossRef 14.
Perdew JP, Burke K, Ernzerhof M (1996). Phys Rev Lett 77:3865
CrossRef 15.
Becke AD (1993). J Chem Phys 98:5648
CrossRef 16.
Klamt A, Schürmann G (1993). J Chem Soc Perkin Trans 2:799
17.
Treutler O, Ahlrichs R (1995). J Chem Phys 102:346
CrossRef 18.
von Arnim M, Ahlrichs R (1999). J Chem Phys 111:9183
CrossRef 19.
Furche F (2001). J Chem Phys 114:5982
CrossRef 20.
Furche F, Ahlrichs R (2002). J Chem Phys 117:7433
CrossRef 21.
Hummel P, Oxgaard J, Goddard WA III, Gray HB (2005). J Coord Chem 58:41
CrossRef 22.
Hummel P, Oxgaard J, Goddard WA III, Gray HB (2005). Inorg Chem 44: 2454
CrossRef 23.
Hummel P, Winkler JR, Gray HB (2006). Dalton Trans 1:168
CrossRef 24.
Hummel P, Halpern-Manners N, Gray HB (2006). Inorg Chem 45:7397
CrossRef 25.
Pink M, Billing R (1996). Z Kristallogr 211:203
CrossRef 26.
Bendix J, Deeth RJ, Weyhermüller T, Bill E, Wieghardt K (2000). Inorg Chem 39:930
CrossRef 27.
Villalba MEC, Guida JA, Piro OE, Castellano EE, Aymonino PJ (2001). J Chem Crystallogr 31:155
CrossRef 28.
Nugent WA, Mayer JM (1988) Metal-ligand multiple bonds. Wiley-Interscience, New York
29.
Manoharan PT, Gray HB (1966). Inorg Chem 5:823
CrossRef 30.
Schreiner AF, Lin SW, Hauser PJ, Hopcus EA, Hamm DJ, Gunter JD (1972). Inorg Chem 11:880
CrossRef