Skip to main content
Log in

Direct calculation of Henry’s law constants from Gibbs ensemble Monte Carlo simulations: nitrogen, oxygen, carbon dioxide and methane in ethanol

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Configurational-bias Monte Carlo simulations in the Gibbs ensemble were used to calculate Henry’s law constants, Ostwald solubilities, and Gibbs free energies of transfer for oxygen, nitrogen, methane, and carbon dioxide in ethanol at 323 and 373 K. These three solubility descriptors can be expressed as functions of mechanical properties that are directly observable in the Gibbs ensemble approach, thereby allowing for very precise determination of the descriptors. Additionally, the Henry’s law constants of multiple solutes can be computed from a single simulation. Most of the simulations were carried out for systems containing 1,000 solvent and up to 8 solute molecules, and further simulations using either 500 or 2,000 solvent molecules point to negligible system size effects. A comparison with experimental data shows that the united-atom version of the transferable potential for phase equilibria force field yields Henry’s law constants that reproduce well the differences between the four solutes and the changes upon increase of the temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Prausnitz JM, Lichtenthaler RN, Azevedo EGD (1986) Molecular thermodynamics of fluid phase equilibria. Englewood Cliffs, Prentice Hall

    Google Scholar 

  2. Sandler SI (1989) Chemical and engineering thermodynamics. New York, Wiley

    Google Scholar 

  3. Shing KS, Gubbins KE, Lucas K (1988). Mol Phys 65:1235

    Article  CAS  Google Scholar 

  4. Jorgensen WL (1989). Acc Chem Res 22:184

    Article  CAS  Google Scholar 

  5. Kollman PA (1996). Acc Chem Res 29:461

    Article  CAS  Google Scholar 

  6. Widom B (1963). J Chem Phys 39:2808

    Article  CAS  Google Scholar 

  7. Widom B (1982). J Phys Chem 86:869

    Article  CAS  Google Scholar 

  8. Sindzingre P, Ciccotti G, Massobrio C, Frenkel D (1987). Chem Phys Lett 136:35

    Article  CAS  Google Scholar 

  9. Kofke DA, Cummings PT (1997). Mol Phys 92:973

    Article  CAS  Google Scholar 

  10. Kofke DA (2004). Mol Phys 102:405

    Article  CAS  Google Scholar 

  11. Lyubartsev AP, Martsinovski AA, Shevkunov SV, Vorontsov-Velyaminov PN (1992). J Chem Phys 96:1776

    Article  CAS  Google Scholar 

  12. Cichowski EC, Schmidt TR, Errington JR (2005). Fluid Phase Equil 236:58

    Article  CAS  Google Scholar 

  13. Panagiotopoulos AZ (1987). Mol Phys 61:813

    Article  CAS  Google Scholar 

  14. Panagiotopoulos AZ, Quirke N, Stapleton M, Tildesley DJ (1988). Mol Phys 63:527

    Article  CAS  Google Scholar 

  15. Smit B, de Smedt P, Frenkel D (1989). Mol Phys 68:931

    Article  CAS  Google Scholar 

  16. Martin MG, Siepmann JI (1997). J Am Chem Soc 119:8921

    Article  CAS  Google Scholar 

  17. Martin MG, Siepmann JI (1998). Theo Chem Acc 99:347

    CAS  Google Scholar 

  18. Chen B, Siepmann JI (2000). J Am Chem Soc 122:6464

    Article  CAS  Google Scholar 

  19. Wick CD, Siepmann JI, Schure MR (2004). Anal Chem 76:2886

    Article  CAS  Google Scholar 

  20. Vlugt TJH, Martin MG, Smit B, Siepmann JI, Krishna R (1998). Mol Phys 94:727

    Article  CAS  Google Scholar 

  21. Martin MG, Siepmann JI (1998). J Phys Chem B 102:2569

    Article  CAS  Google Scholar 

  22. Siepmann JI, Frenkel D (1992). Mol Phys 75:59

    Article  CAS  Google Scholar 

  23. Martin MG, Siepmann JI (1999). J Phys Chem B 103:4508

    Article  CAS  Google Scholar 

  24. Esselink K, Loyens LDJC, Smit B (1995). Phys Rev E 51:1560

    Article  CAS  Google Scholar 

  25. Mackie AD, Tavitian B, Boutin A, Fuchs AH (1997). Mol Simul 19:1

    Article  CAS  Google Scholar 

  26. Chen B, Potoff JJ, Siepmann JI (2001). J Phys Chem B 105:3093

    Article  CAS  Google Scholar 

  27. http://www.chem.umn.edu/groups/siepmann/trappe/intro.php

  28. Chen B, Siepmann JI (1999). J Phys Chem B 103:5370

    Article  CAS  Google Scholar 

  29. Potoff JJ, Siepmann JI (2001). AIChE J 47:1676

    Article  CAS  Google Scholar 

  30. Allen MP, Tildesley DJ (1987). Computer simulation of liquids. Oxford University Press, Oxford

    Google Scholar 

  31. Wood WW, Parker FR (1957). J Chem Phys 27:720

    Article  CAS  Google Scholar 

  32. Friend DG, Frurip DJ, Lemmon EW, Morrison RE, Olson JD, Wilson LC (2005). Fluid Phase Equil 236:15

    Article  CAS  Google Scholar 

  33. Coon JE, Gupta S, McLaughlin E (1987). Chem Phys 113:43

    Article  CAS  Google Scholar 

  34. Wilhelm E, Battino R (1973). Chem Rev 73:1

    Article  CAS  Google Scholar 

  35. Katayama T, Nitta T (1976). J Chem Eng Data 21:194

    Article  CAS  Google Scholar 

  36. Bo S, Battino R, Wilhelm E (1993). J Chem Eng Data 38:611

    Article  CAS  Google Scholar 

  37. Fischer K, Wilken M (2001). J Chem Thermodyn 33:1285

    Article  CAS  Google Scholar 

  38. Ukai T, Kodama D, Miyazaki J, Kato M (2002). J Chem Eng Data 47:1320

    Article  CAS  Google Scholar 

  39. Suzuki K, Sue H, Itou M, Smith RL, Inomata H, Arai K, Saito S (1990). J Chem Eng Data 35:63

    Article  CAS  Google Scholar 

  40. Brunner E, Hultenschmidt W (1990). J Chem Thermodyn 22:73

    Article  CAS  Google Scholar 

  41. Kretschmer CB, Nowakowska J, Wiebe R (1946). Ind Eng Chem 38:506

    Article  CAS  Google Scholar 

  42. Wick CD, Siepmann JI, Schure MR (2003). J Phys Chem B 107:10623

    Article  CAS  Google Scholar 

  43. Siepmann JI, McDonald IR, Frenkel D (1992). J Phys Condens Matter 4:679

    Article  CAS  Google Scholar 

  44. Chen B, Siepmann JI (2005) J Phys Chem B, ASAP article

  45. Escobedo FA, de Pablo JJ (1996). J Chem Phys 105:4391

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ilja. Siepmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Siepmann, J.I. Direct calculation of Henry’s law constants from Gibbs ensemble Monte Carlo simulations: nitrogen, oxygen, carbon dioxide and methane in ethanol. Theor Chem Acc 115, 391–397 (2006). https://doi.org/10.1007/s00214-005-0073-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-005-0073-1

Keywords

Navigation