Skip to main content

Advertisement

Log in

On the role of adenosine (A)2A receptors in cocaine-induced reward: a pharmacological and neurochemical analysis in rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Several studies have suggested the inhibitory control of adenosine (A)2A receptor stimulation in cocaine-induced behavioral actions.

Objectives

A combination of systemic or local drug injections and in  vivo neurochemical analysis investigated A2A receptors in cocaine and food reward.

Methods

Rats, trained to self-administer cocaine or food, were tested with the selective A2A receptor antagonists KW 6002 and SCH 58261 or the selective A2A receptor agonist CGS 21680. Extracellular dopamine, glutamate, and GABA levels in the nucleus accumbens and ventral pallidum were determined following intra-accumbal CGS 21680 administration during cocaine self-administration.

Results

Neither KW 6002 nor SCH 58261 (0.25–1 mg/kg) altered cocaine self-administration (0.125–0.5 mg/kg/infusion), while CGS 21680 (0.2–0.4 mg/kg) produced a downward shift in the cocaine dose–response curve under a fixed ratio schedule of reinforcement and decreased the cocaine breaking point. CGS 21680 blocked also operant responding for food, while the A2A receptor antagonists were inactive. Local steady-state infusion of CGS 21680 (10 μM) during cocaine self-administration increased the active level pressing that was accompanied with reduced dopamine and increased GABA in the nucleus accumbens in the absence of changes in GABA and glutamate levels in the ventral pallidum. Pretreatment with systemic KW 6002 counteracted the increases in number of cocaine infusions seen after intra-accumbal administration of CGS 21680.

Conclusion

The findings support a role of A2A receptors in modulating goal-maintained behaviors. They also indicate that increased accumbal GABA release involving an antagonistic A2A-D2 receptor interaction can participate in mediating the inhibitory effects of the A2A agonist on cocaine reward.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adamczyk P, Miszkiel J, McCreary AC, Filip M, Papp M, Przegaliński E (2012) The effects of cannabinoid CB1, CB2 and vanilloid TRPV1 receptor antagonists on cocaine addictive behavior in rats. Brain Res 1444:45–54

    Article  CAS  PubMed  Google Scholar 

  • Arnold JM, Roberts DC (1997) A critique of fixed and progressive ratio schedules used to examine the neural substrates of drug reinforcement. Pharmacol Biochem Behav 57:441–447

    Article  CAS  PubMed  Google Scholar 

  • Bachtell RK, Self DW (2009) Effects of adenosine A2A receptor stimulation on cocaine-seeking behavior in rats. Psychopharmacology 206:469–478

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barrett AC, Miller JR, Dohrmann JM, Caine SB (2004) Effects of dopamine indirect agonists and selective D1-like and D2-like agonists and antagonists on cocaine self-administration and food maintained responding in rats. Neuropharmacology 47(Suppl 1):256–273

    Article  CAS  PubMed  Google Scholar 

  • Blum K, Chen AL, Giordano J, Borsten J, Chen TJ, Hauser M, Simpatico T, Femino J, Braverman ER, Barh D (2012) The addictive brain: all roads lead to dopamine. J Psychoactive Drugs 44:134–143

    Article  PubMed  Google Scholar 

  • Borroto-Escuela DO, Romero-Fernandez W, Rivera A, Van Craenenbroeck K, Tarakanov AO, Agnati LF, Fuxe K (2013) On the G-protein-coupled receptor heteromers and their allosteric receptor-receptor interactions in the central nervous system: focus on their role in pain modulation. Evid Based Complement Alternat Med. doi:10.1155/2013/563716

    PubMed Central  PubMed  Google Scholar 

  • Caine SB, Negus SS, Mello NK, Patel S, Bristow L, Kulagowski J, Vallone D, Saiardi A, Borrelli E (2002) Role of dopamine D2-like receptors in cocaine self-administration: studies with D2 receptor mutant mice and novel D2 receptor antagonists. J Neurosci 22:2977–2988

    CAS  PubMed  Google Scholar 

  • Chen YI, Choi JK, Jenkins BG (2005) Mapping interactions between dopamine and adenosine A2A receptors using pharmacologic MRI. Synapse 55:80–88

    Article  CAS  PubMed  Google Scholar 

  • Di Chiara G (1995) The role of dopamine in drug abuse viewed from the perspective of its role in motivation. Drug Alcohol Depend 38:95–137

    Article  PubMed  Google Scholar 

  • Doyle SE, Breslin FJ, Rieger JM, Beauglehole A, Lynch WJ (2012) Time and sex-dependent effects of an adenosine A2A/A1 receptor antagonist on motivation to self-administer cocaine in rats. Pharmacol Biochem Behav 102:257–263

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ferraro L, Beggiato S, Marcellino D, Frankowska M, Filip M, Agnati LF, Antonelli T, Tomasini MC, Tanganelli S, Fuxe K (2010) Nanomolar concentrations of cocaine enhance D2-like agonist-induced inhibition of the K+-evoked [3H]-dopamine efflux from rat striatal synaptosomes: a novel action of cocaine. J Neural Transm 117:593–597

    Article  CAS  PubMed  Google Scholar 

  • Ferraro L, Frankowska M, Marcellino D, Zaniewska M, Beggiato S, Filip M, Tomasini MC, Antonelli T, Tanganelli S, Fuxe K (2012) A novel mechanism of cocaine to enhance dopamine D2-like receptor mediated neurochemical and behavioral effects. An in vivo and in vitro study. Neuropsychopharmacology 37:1856–1866

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Filip M, Frankowska M, Zaniewska M, Przegaliński E, Muller CE, Agnati L, Franco R, Roberts DC, Fuxe K (2006) Involvement of adenosine A2A and dopamine receptors in the locomotor and sensitizing effects of cocaine. Brain Res 1077:67–80

    Article  CAS  PubMed  Google Scholar 

  • Filip M, Zaniewska M, Frankowska M, Wydra K, Fuxe K (2012) The importance of the adenosine A(2A) receptor-dopamine D(2) receptor interaction in drug addiction. Curr Med Chem 19:317–355

    Article  CAS  PubMed  Google Scholar 

  • Font L, Mingote S, Farrar AM, Pereira M, Worden L, Stopper C, Port RG, Salamone JD (2008) Intra-accumbens injections of the adenosine A2A agonist CGS 21680 affect effort-related choice behavior in rats. Psychopharmacology 199:515–526

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Frankowska M, Marcellino D, Adamczyk P, Filip M, Fuxe K (2013) Effects of cocaine self-administration and extinction on D2 -like and A2A receptor recognition and D2-like/Gi protein coupling in rat striatum. Addict Biol 18:455–466

    Article  CAS  PubMed  Google Scholar 

  • Fuxe K, Agnati LF, Jacobsen K, Hillion J, Canals M, Torvinen M, Tinner-Staines B, Staines W, Rosin D, Terasmaa A, Popoli P, Leo G, Vergoni V, Lluis C, Ciruela F, Franco R, Ferré S (2003) Receptor heteromerization in adenosine A2A receptor signaling: relevance for striatal function and Parkinson's disease. Neurology 61(11 Suppl 6):S19–S23

  • Fuxe K, Perez de Mora M, Hökfelt T, Agnati L, Ljungdahl A, Johansson O (1977) GABA-DA interactions and their possible relation to schizophrenia. In: Shagass C, Gershon S, Friedhoff AJ (eds) Psychopathology and brain dysfunction. Raven Press, New York, pp 97–111

    Google Scholar 

  • Fuxe K, Ferré S, Zoli M, Agnati LF (1998) Integrated events in central dopamine transmission as analyzed at multiple levels. Evidence for intramembrane adenosine A2A/dopamine D2 and adenosine A1/dopamine D1 receptor interactions in the basal ganglia. Brain Res Rev 26:258–273

    Article  CAS  PubMed  Google Scholar 

  • Fuxe K, Marcellino D, Genedani S, Agnati L (2007) Adenosine A(2A) receptors, dopamine D(2) receptors and their interactions in Parkinson’s disease. Mov Disord 22:1990–2017

    Article  PubMed  Google Scholar 

  • Fuxe K, Borroto-Escuela DO, Romero-Fernandez W, Diaz-Cabiale Z, Rivera A, Ferraro L, Tanganelli S, Tarakanov AO, Garriga P, Narváez JA, Ciruela F, Guescini M, Agnati LF (2012) Extrasynaptic neurotransmission in the modulation of brain function. Focus on the striatal neuronal-glial networks. Front Physiol. doi:10.3389/fphys.2012.00136

    Google Scholar 

  • Fuxe K, Borroto-Escuela DO, Romero-Fernandez W, Zhang WB, Agnati LF (2013) Volume transmission and its different forms in the central nervous system. Chin J Integr Med 19:323–329

    Article  CAS  PubMed  Google Scholar 

  • Gardner EL (2000) What we have learned about addiction from animal models of drug self-administration. Am J Addict 9:285–313

    Article  CAS  PubMed  Google Scholar 

  • Gołembiowska K, Zylewska A (1997) Adenosine receptors-the role in modulation of dopamine and glutamate release in the rat striatum. Pol J Pharmacol 49:317–322

    PubMed  Google Scholar 

  • Gołembiowska K, Zylewska A (1998) Agonists of A1 and A2A adenosine receptors attenuate methamphetamine-induced overflow of dopamine in rat striatum. Brain Res 806:202–209

  • Harper LK, Beckett SR, Marsden CA, McCreary AC, Alexander SP (2006) Effects of the A2A adenosine receptor antagonist KW6002 in the nucleus accumbens in vitro and in vivo. Pharmacol Biochem Behav 83:114–121

    Article  CAS  PubMed  Google Scholar 

  • Hauser RA, Schwarzschild MA (2005) Adenosine A2A receptor antagonists for Parkinson’s disease: rationale, therapeutic potential and clinical experience. Drugs Aging 22:471–482

    Article  CAS  PubMed  Google Scholar 

  • Hettinger BD, Lee A, Linden J, Rosin DL (2001) Ultrastructural localization of adenosine A2A receptors suggests multiple cellular sites for modulation of GABAergic neurons in rat striatum. J Comp Neurol 431:331–346

    Article  CAS  PubMed  Google Scholar 

  • Justinová Z, Ferré S, Redhi GH, Mascia P, Stroik J, Quarta D, Yasar S, Müller CE, Franco R, Goldberg SR (2011) Reinforcing and neurochemical effects of cannabinoid CB1 receptor agonists, but not cocaine, are altered by an adenosine A2A receptor antagonist. Addict Biol 16:405–415

    Article  PubMed Central  PubMed  Google Scholar 

  • Karcz-Kubicha M, Antoniou K, Terasmaa A, Quarta D, Solinas M, Justinova Z, Pezzola A, Reggio R, Müller CE, Fuxe K, Goldberg SR, Popoli P, Ferré S (2003) Involvement of adenosine A1 and A2A receptors in the motor effects of caffeine after its acute and chronic administration. Neuropsychopharmacology 28:1281–1291

    Article  CAS  PubMed  Google Scholar 

  • Kim HO, Ji XD, Siddiqi SM, Olah ME, Stiles GL (1994) Jacobson KA. 2-Substitution of N6-benzyladenosine-5′-uronamides enhances selectivity for A3 adenosine receptors. J Med Chem 37:3614–3621

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Knapp CM, Foye MM, Cottam N, Ciraulo DA, Kornetsky C (2001) Adenosine agonists CGS 21680 and NECA inhibit the initiation of cocaine self-administration. Pharmacol Biochem Behav 68:797–803

    Article  CAS  PubMed  Google Scholar 

  • Koe BK (1976) Molecular geometry of inhibitors of the uptake of catecholamines and serotonin in synaptosomal preparations of rat brain. J Pharmacol Exp Ther 199:649–661

    CAS  PubMed  Google Scholar 

  • Kravitz AV, Tye LD, Kreitzer AC (2012) Distinct roles for direct and indirect pathway striatal neurons in reinforcement. Nat Neurosci 15:816–818

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lobo MK, Covington HE 3rd, Chaudhury D, Friedman AK, Sun H, Damez-Werno D, Dietz DM et al (2010) Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science 330:385–390

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marcellino D, Roberts DC, Navarro G, Filip M, Agnati L, Lluís C, Franco R, Fuxe K (2007) Increase in A2A receptors in the nucleus accumbens after extended cocaine self-administration and its disappearance after cocaine withdrawal. Brain Res 1143:208–220

    Article  CAS  PubMed  Google Scholar 

  • Marcellino D, Navarro G, Sahlholm K, Nilsson J, Agnati LF, Canela EI, Lluís C, Århem P, Franco R, Fuxe K (2010) Cocaine produces D2R-mediated conformational changes in the adenosine A(2A)R-dopamine D2R heteromer. Biochem Biophys Res Commun 394:988–992

    Article  CAS  PubMed  Google Scholar 

  • Markou A, Weiss F, Gold LH, Caine SB, Schulteis G, Koob GF (1993) Animal models of drug craving. Psychopharmacology 112:163–182

    Article  CAS  PubMed  Google Scholar 

  • Micioni di Bonaventura MV, Cifani C, Lambertucci C, Volpini R, Cristalli G, Massi M (2012) A(2A) adenosine receptor agonists reduce both high-palatability and low-palatability food intake in female rats. Behav Pharmacol 23:567–574

    Article  CAS  PubMed  Google Scholar 

  • Mingote S, Pereira M, Farrar AM, McLaughlin PJ, Salamone JD (2008) Systemic administration of the adenosine A(2A) agonist CGS 21680 induces sedation at doses that suppress lever pressing and food intake. Pharmacol Biochem Behav 89:345–351

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moeller FG, Steinberg JL, Lane SD, Kjome KL, Ma L, Ferre S, Schmitz JM, Green CE, Bandak SI, Renshaw PF, Kramer LA, Narayana PA (2012) Increased orbitofrontal brain activation after administration of a selective adenosine A(2A) antagonist in cocaine dependent subjects. Front Psychiatry 3:1–9

    Article  Google Scholar 

  • O’Neill CE, Hobson BD, Levis SC, Bachtell RK (2014) Persistent reduction of cocaine seeking by pharmacological manipulation of adenosine A1 and A2A receptors during extinction training in rats. Psychopharmacology. doi:10.1007/s00213-014-3489-2

    Google Scholar 

  • Paxinos G, Watson C (1998) The Rat Brain in Stereotaxic Coordinates, Academic Press, New York

  • Peterson JD, Goldberg JA, Surmeier DJ (2012) Adenosine A2A receptor antagonists attenuate striatal adaptations following dopamine depletion. Neurobiol Dis 45:409–146

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pettit HO, Justice JB Jr (1991) Effect of dose on cocaine self-administration behavior and dopamine levels in the nucleus accumbens. Brain Res 539:94–102

    Article  CAS  PubMed  Google Scholar 

  • Phillips GD, Robbins TW, Everitt BJ (1994) Bilateral intra-accumbens self-administration of d-amphetamine: antagonism with intra-accumbens SCH-23390 and sulpiride. Psychopharmacology 114:477–485

    Article  CAS  PubMed  Google Scholar 

  • Pisani A, Bernardi G, Ding J, Surmeier DJ (2007) Re-emergence of striatal cholinergic interneurons in movement disorders. Trends Neurosci 30:545–553

    Article  CAS  PubMed  Google Scholar 

  • Richardson NR, Roberts DC (1996) Progressive ratio schedules in drug self-administration studies in rats: a method to evaluate reinforcing efficacy. J Neurosci Methods 66:1–11

    Article  CAS  PubMed  Google Scholar 

  • Rimondini R, Ferré S, Giménez-Llort L, Ogren SO, Fuxe K (1998) Differential effects of selective adenosine A1 and A2A receptor agonists on dopamine receptor agonist-induced behavioural responses in rats. Eur J Pharmacol 347:153–158

    Article  CAS  PubMed  Google Scholar 

  • Shen HY, Coelho JE, Ohtsuka N, Canas PM, Day YJ, Huang QY, Rebola N, Yu L, Boison D, Cunha RA, Linden J, Tsien JZ, Chen JF (2008) A critical role of the adenosine A2A receptor in extrastriatal neurons in modulating psychomotor activity as revealed by opposite phenotypes of striatum and forebrain A2A receptor knock-outs. J Neurosci 28:2970–2975

    Article  CAS  PubMed  Google Scholar 

  • Shen HY, Canas PM, Garcia-Sanz P, Lan JQ, Boison D, Moratalla CRA, Chen JF (2013) Adenosine A2A receptors in striatal glutamatergic terminals and GABAergic neurons oppositely modulate psychostimulant action and DARPP-32 phosphorylation. PLoS One 8:e80902. doi:10.1371/journal.pone.0080902

    Article  PubMed Central  PubMed  Google Scholar 

  • Sizemore GM, Co C, Smith JE (2000) Ventral pallidal extracellular fluid levels of dopamine, serotonin, gamma amino butyric acid, and glutamate during cocaine self-administration in rats. Psychopharmacology 150:391–398

    Article  CAS  PubMed  Google Scholar 

  • Suto N, Ecke LE, You ZB, Wise RA (2010) Extracellular fluctuations of dopamine and glutamate in the nucleus accumbens core and shell associated with lever pressing during cocaine self-administration, extinction, and yoked cocaine administration. Psychopharmacology 211:267–275

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tang XC, McFarland K, Cagle S, Kalivas PW (2005) Cocaine-induced reinstatement requires endogenous stimulation of mu-opioid receptors in the ventral pallidum. J Neurosci 25:4512–4520

    Article  CAS  PubMed  Google Scholar 

  • Tanganelli S, Sandager Nielsen K, Ferraro L, Antonelli T, Kehr J, Franco R, Ferré S, Agnati LF, Fuxe K, Scheel-Krüger J (2004) Striatal plasticity at the network level. Focus on adenosine A2A and D2 interactions in models of Parkinson’s disease. Parkinsonism Relat Disord 10:273–280

    Article  CAS  PubMed  Google Scholar 

  • Tozzi A, de Iure A, Di Filippo M, Tantucci M, Costa C, Borsini F, Ghiglieri V et al (2011) The distinct role of medium spiny neurons and cholinergic interneurons in the D2/A2A receptor interaction in the striatum: implications for Parkinson’s disease. J Neurosci 31:1850–1862

    Article  CAS  PubMed  Google Scholar 

  • Trifilieff P, Rives ML, Urizar E, Piskorowski RA, Vishwasrao HD, Castrillon J, Schmauss C, Slättman M, Gullberg M, Javitch JA (2011) Detection of antigen interactions ex vivo by proximity ligation assay: endogenous dopamine D2-adenosine A2A receptor complexes in the striatum. Biotechniques 51:111–118

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weerts EM, Griffiths RR (2003) The adenosine receptor antagonist CGS15943 reinstates cocaine-seeking behavior and maintains self-administration in baboons. Psychopharmacology 168:155–163

    Article  CAS  PubMed  Google Scholar 

  • Wydra K, Golembiowska K, Zaniewska M, Kamińska K, Ferraro L, Fuxe K, Filip M (2013) Accumbal and pallidal dopamine, glutamate and GABA overflow during cocaine self-administration and its extinction in rats. Addict Biol 18:307–324

    Article  CAS  PubMed  Google Scholar 

  • Yoshimatsu A, Shimazoe T, Kawashimo A, Shuto T, Doi Y, Fukumoto T (2001) Effects of adenosine A1- and A2A-receptor agonists on enhancement of dopamine release from the striatum in methamphetamine-sensitized rats. J Pharmacol 86:254–257

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the grants no. N N401 019635 and 2011/03/N/NZ7/06294 (Poland), from the Brain Fund (Uppsala, Sweden) and the Swedish Research Council (04X-715).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Małgorzata Filip.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Histological verification of microdialysis probe placements in the nucleus accumbens (left panels) and the ventral pallidum (right panels) of rats that underwent VEH and/or CGS 21680 local infusions during the cocaine self-administration session. Plates are taken from Paxinos and Watson (1998) and the straight lines represent the 2-mm dialyzing lengths of the probes. The figure shows bilateral placements for only a subset of the experimental pool of cocaine or CGS 21680 group (PDF 106 kb)

Fig. S2

Representative records of cocaine self-administration following A2A receptor agonist or vehicle systemic or local administration. Each vertical line represents separate cocaine infusion earned in a 2-h session. (a) Effects of CGS 21680 (ip) pretreatment on cocaine (0.5 mg/kg/infusion) self-administration, (b) Effects of CGS 21680 (ip) pretreatment on cocaine (0.25 mg/kg/infusion) self-administration, (c) Effects of CGS 21680 (intra-nucleus accumbens; NAC) pretreatment on cocaine (0.5 mg/kg/infusion) self-administration. (PDF 51 kb)

Fig. S3

Effects of the A2A receptor ligands on horizontal locomotor activity in drug-naive rats. Horizontal locomotor activity was expressed as distance in cm (±SEM) and recorded during 15-min bins (panels a,c,e) and a 2-h period (panels b,d,f). Data are presented as ± SEM. *p<0.05, **p<0.01, ***p<0.001 vs. vehicle (VEH) (Dunnett’s test). N= 6-8 rats/group (PDF 127 kb)

Fig. S4

Effects of the A2A receptor ligands on horizontal locomotor activity in cocaine-experienced rats. Horizontal locomotor activity was expressed as distance in cm (±SEM) and recorded during 15-min bins (panels a,c,e) and a 2-h period (panel b,d,f). Data are presented as ± SEM. **p<0.01, ***p<0.001 vs. vehicle (VEH) (Newman-Keuls’ test); ^p< 0.05, ^^^p< 0.001 vs. VEH (Dunnett’s test). N= 6-8 rats/group. (PDF 57 kb)

Table S1

(PDF 49 kb)

Table S2

(PDF 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wydra, K., Gołembiowska, K., Suder, A. et al. On the role of adenosine (A)2A receptors in cocaine-induced reward: a pharmacological and neurochemical analysis in rats. Psychopharmacology 232, 421–435 (2015). https://doi.org/10.1007/s00213-014-3675-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-014-3675-2

Keywords

Navigation