Skip to main content
Log in

Synergistic interaction between caloric restriction and amphetamine in food-unrelated approach behavior of rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Approach behavior is regulated by the brain integrating information about environment and body state. Psychoactive drugs interact with this process.

Objectives

We examined the extent to which caloric (i.e., food) restriction, amphetamine (AMPH) and lithium interact in potentiating locomotor activity and responding reinforced by visual stimulus (VS), a reward unrelated to energy homeostasis.

Methods

Rats either had ad libitum access to food or received daily rations that maintained 85–90 % of their original body weights. Leverpressing turned on a cue light for 1 s and turned off house light for 5 s. AMPH and lithium were administered through intraperitoneal injections and diet, respectively.

Results

Food restriction or AMPH (1 mg/kg) alone had little effect on VS-reinforced responding; however, the combination of the two conditions markedly potentiated VS-reinforced responding (fourfold). Food restriction lasting 7 days or longer was needed to augment AMPH's effect on VS-reinforced responding. AMPH (0.3–3 mg/kg) potentiated locomotor activity similarly between food-restricted and ad libitum groups. Repeated injections of AMPH-sensitized locomotor activity, but not VS-reinforced responding. In addition, while chronic lithium treatments (0.2 % lithium carbonate chow) reduced VS-reinforced responding, chronic lithium further augmented AMPH-potentiated VS-reinforced responding.

Conclusions

Food restriction interacts with psychoactive drugs to potentiate goal-directed responding unrelated to food seeking in a much more powerful manner than previously thought. The novel finding that lithium can augment a psychostimulant effect of AMPH suggests caution when combining lithium and psychostimulant drugs in clinical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • American Psychiatric Association (2000) Diagnostic and statistical manual of mental disorders: DSM-IV-TR. American Psychiatric Association, Washington, DC, p 567

    Google Scholar 

  • Bardo MT, Bowling SL, Robinet PM, Rowlett JK, Lacy M, Mattingly BA (1993) Role of dopamine D1 and D2 receptors in novelty-maintained place preference. Exp Clin Psychopharmacol 1:101–109

    Article  CAS  Google Scholar 

  • Beninger RJ, Ranaldi R (1992) The effects of amphetamine, apomorphine, SKF 38393, quinpirole and bromocriptine on responding for conditioned reward in rats. Behav Pharmacol 3:155–163

    Article  CAS  PubMed  Google Scholar 

  • Berlyne DE, Koenig ID, Hirota T (1966) Novelty, arousal, and the reinforcement of diversive exploration in the rat. J Comp Physiol Psychol 62:222–226

    Article  CAS  PubMed  Google Scholar 

  • Bevins RA, Besheer J, Palmatier MI, Jensen HC, Pickett KS, Eurek S (2002) Novel-object place conditioning: behavioral and dopaminergic processes in expression of novelty reward. Behav Brain Res 129:41–50

    Article  CAS  PubMed  Google Scholar 

  • Bindra D (1968) Neuropsychological interpretation of the effects of drive and incentive-motivation on general activity and instrumental behavior. Psychol Rev 75:1–22

    Article  Google Scholar 

  • Bindra D (1969) The interrelated mechanisms of reinforcement and motivation, and the nature of their influence on response. In: Arnold WJ, Levine D (eds) Nebraska symposium on motivation, vol. 17. University of Nebraska Press, Lincoln, pp 1–33

    Google Scholar 

  • Bond DJ, Hadjipavlou G, Lam RW, McIntyre RS, Beaulieu S, Schaffer A, Weiss M (2012) The Canadian network for mood and anxiety treatments (CANMAT) task force recommendations for the management of patients with mood disorders and comorbid attention-deficit/hyperactivity disorder. Ann Clin Psychiatry 24:23–37

    PubMed  Google Scholar 

  • Bowden CL, Brugger AM, Swann AC, Calabrese JR, Janicak PG et al (1994) Efficacy of divalproex vs lithium and placebo in the treatment of mania. JAMA 271:918–924

    Article  CAS  PubMed  Google Scholar 

  • Brauer LH, de Wit H (1996) Subjective responses to d-amphetamine alone and after pimozide pretreatment in normal, healthy volunteers. Biol Psychiatry 39:26–32

    Article  CAS  PubMed  Google Scholar 

  • Breitbart W, Alici Y (2010) Psychostimulants for cancer-related fatigue. J Natl Compr Cancer Netw 8:933–942

    Google Scholar 

  • Cabeza de Vaca S, Carr KD (1998) Food restriction enhances the central rewarding effect of abused drugs. J Neurosci 18:7502–7510

    CAS  PubMed  Google Scholar 

  • Cabeza de Vaca S, Krahne LL, Carr KD (2004) A progressive ratio schedule of self-stimulation testing in rats reveals profound augmentation of d-amphetamine reward by food restriction but no effect of a “sensitizing” regimen of d-amphetamine. Psychopharmacology 175:106–113

    Article  CAS  PubMed  Google Scholar 

  • Carr KD (2002) Augmentation of drug reward by chronic food restriction: behavioral evidence and underlying mechanisms. Physiol Behav 76:353–364

    Article  CAS  PubMed  Google Scholar 

  • Carr KD, Wolinsky TD (1993) Chronic food restriction and weight loss produce opioid facilitation of perifornical hypothalamic self-stimulation. Brain Res 607:141–148

    Article  CAS  PubMed  Google Scholar 

  • Cassidy F, Ahearn EP, Carroll BJ (2001) Substance abuse in bipolar disorder. Bipolar Disord 3:181–188

    Article  CAS  PubMed  Google Scholar 

  • Chaudhri N, Caggiula AR, Donny EC, Palmatier MI, Liu X, Sved AF (2006) Complex interactions between nicotine and nonpharmacological stimuli reveal multiple roles for nicotine in reinforcement. Psychopharmacology (Berlin) 184:353–366

    Article  CAS  Google Scholar 

  • Clark FC (1966) Effects of d-amphetamine on performance under a multiple schedule in the rat. Psychopharmacology 9:157

    Article  CAS  Google Scholar 

  • Cohen SL (1991) Food-paired stimuli as conditioned reinforcers: effects of d-amphetamine. J Exp Anal Behav 56:277

    Article  CAS  PubMed  Google Scholar 

  • Damasio AR (2010) Self comes to mind. Vintage Books, New York

    Google Scholar 

  • D'Cunha T, Sedki F, Macri J, Casola C, Shalev U (2013) The effects of chronic food restriction on cue-induced heroin seeking in abstinent male rats. Psychopharmacology 225:241–250

    Article  PubMed  Google Scholar 

  • Deroche V, Piazza PV, Casolini P, Le Moal M, Simon H (1993) Sensitization to the psychomotor effects of amphetamine and morphine induced by food restriction depends on corticosterone secretion. Brain Res 611:352–356

    Article  CAS  PubMed  Google Scholar 

  • Dickinson A, Balleine B (1994) Motivational control of goal-directed action. Anim Learn Behav 22:1–18

    Article  Google Scholar 

  • Dickinson A, Smith J, Mirenowicz J (2000) Dissociation of Pavlovian and instrumental incentive learning under dopamine antagonists. Behav Neurosci 114:468–483

    Article  CAS  PubMed  Google Scholar 

  • Donny EC, Chaudhri N, Caggiula AR, Evans-Martin FF, Booth S, Gharib MA, Clements LA, Sved AF (2003) Operant responding for a visual reinforcer in rats is enhanced by noncontingent nicotine: implications for nicotine self-administration and reinforcement. Psychopharmacology (Berlin) 169:68–76

    Article  CAS  Google Scholar 

  • Duchesne V, Boye SM (2013) Differential contribution of mesoaccumbens and mesohabenular dopamine to intracranial self-stimulation. Neuropharmacology 70:43–50

    Article  CAS  PubMed  Google Scholar 

  • Ebstein RP, Eliashar S, Belmaker RH, Ben-Uriah Y, Yehuda S (1980) Chronic lithium treatment and dopamine-mediated behavior. Biol Psychiatry 15:459–467

    CAS  PubMed  Google Scholar 

  • Fessler RG, Sturgeon RD, London SF, Meltzer HY (1982) Effects of lithium on behaviour induced by phencyclidine and amphetamine in rats. Psychopharmacology 78:373–376

    Article  CAS  PubMed  Google Scholar 

  • Flagel SB, Clark JJ, Robinson TE, Mayo L, Czuj A, Willuhn I, Akers CA, Clinton SM, Phillips PEM, Akil H (2011) A selective role for dopamine in stimulus-reward learning. Nature 469:53–57

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Forgays DG, Levin H (1958) Learning as a function of change of sensory stimulation in food-deprived and food-satiated animals. J Comp Physiol Psychol 51:50–54

    Article  CAS  PubMed  Google Scholar 

  • Fox SS (1962) Self-maintained sensory input and sensory deprivation in monkeys: a behavioral and neuropharmacological study. J Comp Physiol Psychol 55:438–444

    Article  CAS  PubMed  Google Scholar 

  • Gerdjikov T, Baker T, Beninger R (2011) Amphetamine-induced enhancement of responding for conditioned reward in rats: interactions with repeated testing. Psychopharmacology 214:891–899

    Article  CAS  PubMed  Google Scholar 

  • Goodrick CL (1965) Operant level and light-contingent bar presses as a function of age and deprivation. Psychol Rep 17:283–288

    Article  CAS  PubMed  Google Scholar 

  • Gould TD, O'Donnell KC, Picchini AM, Manji HK (2007) Strain differences in lithium attenuation of d-amphetamine-induced hyperlocomotion: a mouse model for the genetics of clinical response to lithium. Neuropsychopharmacology 32:1321–1333

    Article  CAS  PubMed  Google Scholar 

  • Guy EG, Fletcher P (2013) Nicotine-induced enhancement of responding for conditioned reinforcement in rats: role of prior nicotine exposure and α4β2 nicotinic receptors. Psychopharmacology 225:429–440

    Article  CAS  PubMed  Google Scholar 

  • Hasler G, Drevets WC, Gould TD, Gottesman II, Manji HK (2006) Toward constructing an endophenotype strategy for bipolar disorders. Biol Psychiatry 60:93–105

    Article  PubMed  Google Scholar 

  • Herling S, Downs D, Woods J (1979) Cocaine, d-amphetamine, and pentobarbital effects on responding maintained by food or cocaine in rhesus monkeys. Psychopharmacology 64:261–269

    Article  CAS  PubMed  Google Scholar 

  • Hill RT (1970) Facilitation of conditioned reinforcement as a mechanism of psychomotor stimulation. In: Costa E, Garatitini S (eds) Amphetamine and related compounds. Raven Press, New York, pp 781–795

    Google Scholar 

  • Hoebel BG, Teitelbaum P (1962) Hypothalamic control of feeding and self-stimulation. Science 135:375–376

    Article  CAS  PubMed  Google Scholar 

  • Hoffman DC, Beninger RJ (1985) The D1 dopamine receptor antagonist, SCH 23390 reduces locomotor activity and rearing in rats. Pharmacol Biochem Behav 22:341–342

    Article  CAS  PubMed  Google Scholar 

  • Ikemoto S (2010) Brain reward circuitry beyond the mesolimbic dopamine system: a neurobiological theory. Neurosci Biobehav Rev 35:129–150

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ikemoto S, Panksepp J (1999) The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seeking. Brain Res Rev 31:6–41

    Google Scholar 

  • Ikemoto S, Qin M, Liu ZH (2005) The functional divide for primary reinforcement of d-amphetamine lies between the medial and lateral ventral striatum: is the division of the accumbens core, shell and olfactory tubercle valid? J Neurosci 25:5061–5065

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ikemoto S, Qin M, Liu ZH (2006) Primary reinforcing effects of nicotine are triggered from multiple regions both inside and outside the ventral tegmental area. J Neurosci 26:723–730

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jefferson JW (1990) Lithium: the present and the future. J Clin Psychiatry 51:4–8

    PubMed  Google Scholar 

  • Kelley AE, Delfs JM (1991) Dopamine and conditioned reinforcement: I. Differential effects of amphetamine microinjections into striatal subregions. Psychopharmacology 103:187–196

    Article  CAS  PubMed  Google Scholar 

  • Kiernan CC (1965) Modification of the effects of amphetamine sulphate by past experience in the hooded rat. Psychopharmacology 8:23–31

    Article  CAS  Google Scholar 

  • Kish GB (1966) Studies of sensory reinforcement. In: Honing WK (ed) Operant behavior: Areas of research and application. Appleton-Century-Crofts, New York, pp 109–159

    Google Scholar 

  • Lerer B, Globus M, Brik E, Hamburger R, Belmaker RH (1984) Effect of treatment and withdrawal from chronic lithium in rats on stimulant-induced responses. Neuropsychobiology 11:28–32

    Article  CAS  PubMed  Google Scholar 

  • Margules DL, Olds J (1962) Identical “feeding” and “rewarding” systems in the lateral hypothalamus of rats. Science 135:374–375

    Article  CAS  PubMed  Google Scholar 

  • Marinković P, Pešić V, Lončarević N, Smiljanić K, Kanazir S, Ruždijić S (2007) Behavioral and biochemical effects of various food-restriction regimens in the rats. Physiol Behav 92:492–499

    Article  PubMed  Google Scholar 

  • Masoro EJ (2000) Caloric restriction and aging: an update. Exp Gerontol 35:299–305

    Article  CAS  PubMed  Google Scholar 

  • McDonald JH (2009) Handbook of biological statistics. Sparky House, Baltimore

    Google Scholar 

  • McElroy SL, Altshuler LL, Suppes T, Paul E, Keck J, Frye MA, Denicoff KD, Nolen WA, Kupka RW, Leverich GS, Rochussen JR, Rush AJ, Post RM (2001) Axis I psychiatric comorbidity and its relationship to historical illness variables in 288 patients with bipolar disorder. Am J Psychiatry 158:420–426

    Article  CAS  PubMed  Google Scholar 

  • Michalsen A (2010) Prolonged fasting as a method of mood enhancement in chronic pain syndromes: a review of clinical evidence and mechanisms. Curr Pain Headache Rep 14:80–87

    Article  PubMed  Google Scholar 

  • National Research Council (2011) Guide for the care and use of laboratory animals. National Academies Press, Washington, DC

    Google Scholar 

  • National Task Force on the Prevention and Treatment of Obesity (1996) Long-term pharmacotherapy in the management of obesity: national task force on the prevention and treatment of obesity. JAMA 276:1907–1915

    Article  Google Scholar 

  • NDP Group (2013) The NPD Group reports dieting is at an all-time low-dieting season has begun, but it's not what it used to be! Available via https://www.npd.com/wps/portal/npd/us/news/press-releases/the-npd-group-reports-dieting-is-at-an-all-time-low-dieting-season-has-begun-but-its-not-what-it-used-to-be/. Accessed 30 Aug 2013

  • Niv Y, Daw ND, Joel D, Dayan P (2007) Tonic dopamine: opportunity costs and the control of response vigor. Psychopharmacology (Berlin) 191:507–520

    Article  CAS  Google Scholar 

  • O’Donnell KC, Gould TD (2007) The behavioral actions of lithium in rodent models: leads to develop novel therapeutics. Neurosci Biobehav Rev 31:932–962

    Article  PubMed Central  PubMed  Google Scholar 

  • Olausson P, Jentsch JD, Taylor JR (2004) Nicotine enhances responding with conditioned reinforcement. Psychopharmacology 171:173–178

    Article  CAS  PubMed  Google Scholar 

  • Olds ME (1970) Comparative effects of amphetamine, scopolamine, chlordiazepoxide, and diphenylhydantoin on operant and extinction behavior with brain stimulation and food reward. Neuropharmacology 9:519–532

    Article  CAS  PubMed  Google Scholar 

  • Panksepp J (1998) Affective neuroscience: The foundations of human and animal emotions. Oxford University, New York

    Google Scholar 

  • Parkinson JA, Roberts AC, Everitt BJ, Di Ciano P (2005) Acquisition of instrumental conditioned reinforcement is resistant to the devaluation of the unconditioned stimulus. Q J Exp Psychol B 58:19–30

    Article  CAS  PubMed  Google Scholar 

  • Pliszka S (2007) Practice parameter for the assessment and treatment of children and adolescents with attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 46:894–921

    Article  PubMed  Google Scholar 

  • Regier DA, Farmer ME, Rae DS, Locke BZ, Keith SJ, Judd LL, Goodwin FK (1990) Comorbidity of mental disorders with alcohol and other drug abuse: results from the epidemiologic catchment area (eca) study. JAMA 264:2511–2518

    Article  CAS  PubMed  Google Scholar 

  • Rescorla RA, Solomon RL (1967) Two-process learning theory: relationships between Pavlovian conditioning and instrumental learning. Psychol Rev 74:151–182

    Article  CAS  PubMed  Google Scholar 

  • Robbins TW (1975) The potentiation of conditioned reinforcement by psychomotor stimulant drugs. A test of Hill's hypothesis. Psychopharmacologia 45:103–114

    Article  CAS  Google Scholar 

  • Robbins TW (1978) The acquisition of responding with conditioned reinforcement: effects of pipradrol, methylphenidate, d-amphetamine, and nomifensine. Psychopharmacology (Berlin) 58:79–87

    Article  CAS  Google Scholar 

  • Robbins TW, Koob GF (1978) Pipradrol enhances reinforcing properties of stimuli paired with brain stimulation. Pharmacol Biochem Behav 8:219–222

    Article  CAS  PubMed  Google Scholar 

  • Robinson TE, Becker JB (1986) Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res Rev 11:157–198

    Article  CAS  Google Scholar 

  • Ross RG (2006) Psychotic and manic-like symptoms during stimulant treatment of attention deficit hyperactivity disorder. Am J Psychiatry 163:1149–1152

    Article  PubMed  Google Scholar 

  • Segal EF (1959) Confirmation of a positive relation between deprivation and number of responses emitted for light reinforcement. J Exp Anal Behav 2:165–169

    Article  CAS  PubMed  Google Scholar 

  • Shin R, Cao J, Webb SM, Ikemoto S (2010) Amphetamine administration into the ventral striatum facilitates behavioral interaction with unconditioned visual signals in rats. PLoS ONE 5:e8741

    Article  PubMed Central  PubMed  Google Scholar 

  • Staunton DA, Magistretti PJ, Shoemaker WJ, Bloom FE (1982) Effects of chronic lithium treatment on dopamine receptors in the rat corpus striatum: I. Locomotor activity and behavioral supersensitivity. Brain Res 232:391–400

    Article  CAS  PubMed  Google Scholar 

  • Stewart J, Hurwitz HMB (1958) Studies in light-reiforced behaviour: III. The effect of continuous, zero and fixed-ratio reinforcement. Q J Exp Psychol 10:56–61

    Article  Google Scholar 

  • Taylor JR, Robbins TW (1984) Enhanced behavioral control by conditioned reinforcers following microinjections of d-amphetamine into the nucleus accumbens. Psychopharmacology 84:405–412

    Article  CAS  PubMed  Google Scholar 

  • Thomsen K, Olesen OV (1974) Long-term lithium administration to rats. Lithium and sodium dosage and administration, avoidance of intoxication, polyuric control rats. Int Pharmacopsychiatry 9:118–124

    CAS  PubMed  Google Scholar 

  • Trepanowski JF, Bloomer RJ (2010) The impact of religions fasting on human health. Nutr J 9:57

    Article  PubMed Central  PubMed  Google Scholar 

  • Van Kammen DP, Murphy DL (1975) Attenuation of the euphoriant and activating effects of d- and L-amphetamine by lithium carbonate treatment. Psychopharmacology 44:215–224

    Article  Google Scholar 

  • van Kammen DP, Docherty JP, Marder SR, Rosenblatt JE, Bunney WE (1985) Lithium attenuates the activation—euphoria but not the psychosis induced by d-amphetamine in schizophrenia. Psychopharmacology 87:111–115

    Article  PubMed  Google Scholar 

  • Vollrath-Smith FR, Shin R, Ikemoto S (2012) Synergistic interaction between baclofen administration into the median raphe nucleus and inconsequential visual stimuli on investigatory behavior of rats. Psychopharmacology 220:15–25

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wassum KM, Ostlund SB, Loewinger GC, Maidment NT (2013) Phasic mesolimbic dopamine release tracks reward seeking during expression of pavlovian-to-instrumental transfer. Biol Psychiatry 73:747–755

    Article  CAS  PubMed  Google Scholar 

  • Webb SM, Vollrath-Smith F, Shin R, Jhou T, Xu S, Ikemoto S (2012) Rewarding and incentive motivational effects of excitatory amino acid receptor antagonists into the median raphe and adjacent regions of the rat. Psychopharmacology 224:401–412

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wise RA, Munn E (1993) Effects of repeated amphetamine injections on lateral hypothalamic brain stimulation reward and subsequent locomotion. Behav Brain Res 55:195–201

    Article  CAS  PubMed  Google Scholar 

  • Wyvell CL, Berridge KC (2000) Intra-accumbens amphetamine increases the conditioned incentive salience of sucrose reward: enhancement of reward “wanting” without enhanced “liking” or response reinforcement. J Neurosci 20:8122–8130

    CAS  PubMed  Google Scholar 

  • Young JW, Henry BL, Geyer MA (2011) Predictive animal models of mania: hits, misses and future directions. Br J Pharmacol 164:1263–1284

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Berridge KC, Tindell AJ, Smith KS, Aldridge JW (2009) A neural computational model of incentive salience. PLoS Comput Biol 5:e1000437

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The present work was supported by the Intramural Research Program of National Institute on Drug Abuse, National Institutes of Health. The authors thank Ms. Amy N. Hamaker for conducting a pilot experiment and Dr. T. D. Gould for helping with lithium concentration analysis.

Financial Disclosures

The authors have no financial disclosure to make.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Ikemoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keller, K.L., Vollrath-Smith, F.R., Jafari, M. et al. Synergistic interaction between caloric restriction and amphetamine in food-unrelated approach behavior of rats. Psychopharmacology 231, 825–840 (2014). https://doi.org/10.1007/s00213-013-3300-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-013-3300-9

Keywords

Navigation