Skip to main content

Advertisement

Log in

Impairing effect of amphetamine and concomitant ionotropic glutamate receptors blockade in the ventral striatum on spatial learning in mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Accumulating evidence supports the involvement of the ventral striatum (VS) in spatial information processing. The multiple cortical glutamatergic and mesolimbic dopaminergic (DAergic) afferences on the same neurons in the ventral striatum provide the neuroanatomical substrate for glutamate and dopamine functional interaction. However, there is little evidence in the literature on how this interaction affects the ability to encode spatial information.

Objective

First, we evaluated the effect of intra-VS bilateral infusion of different doses of amphetamine (0.3, 0.75, and 1.5 μg/side) on the ability to detect spatial novelty in mice. Next, we examined the impact produced on the same abilities by intra-VS infusion of ineffective doses of amphetamine (0.3 μg/side) in association with N-methyl-d-aspartate (NMDA) (3.125 ng/side) or α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) (0.25 ng/side) receptor antagonist.

Results

The results show that infusion of amphetamine impairs detection of spatial novelty, affecting also exploratory activity and marginally the detection of nonspatial novelty. In contrast, an association of subthreshold doses of amphetamine with NMDA or AMPA receptor antagonists exerted a selective effect on reactivity to a spatial change.

Conclusions

These findings demonstrate that enhanced DAergic activity in the VS enhances glutamate receptor antagonist-induced impairment in learning and memory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aizman O, Brismar H, Uhlén P, Zettergren E, Levey AI, Forssberg H, Greengard P, Aperia A (2000) Anatomical and physiological evidence for D1 and D2 dopamine receptor colocalization in neostriatal neurons. Nature Neurosci 3:226–230

    Article  PubMed  CAS  Google Scholar 

  • Annett LE, McGregor A, Robbins TW (1989) The effects of ibotenic acid lesions of the nucleus accumbens on spatial learning and extinction in the rat. Behav Brain Res 31:231–242

    Article  PubMed  CAS  Google Scholar 

  • Bamford NS, Zhang H, Schmitz Y, Wu NP, Cepeda C, Levine MS, Schmauss C, Zakharenko SS, Zablow L, Sulzer D (2004) Heterosynaptic dopamine neurotransmission selects sets of corticostriatal terminals. Neuron 42:653–663

    Article  PubMed  CAS  Google Scholar 

  • Bouyer JJ, Park DH, Joh TH, Pickel VM (1984) Chemical and structural analysis of the relation between cortical inputs and tyrosine hydroxylase-containing terminals in rat neostriatum. Brain Res 302:267–275

    Article  PubMed  CAS  Google Scholar 

  • Burns LH, Everitt BJ, Kelley AE, Robbins TW (1994) Glutamate–dopamine interactions in the ventral striatum: role in locomotor activity and responding with conditioned reinforcement. Psychopharmacology 115:516–28

    Article  PubMed  CAS  Google Scholar 

  • Cepeda C, Buchwald NA, Levine MS (1993) Neuromodulatory actions of dopamine in the neostriatum are dependent upon the excitatory amino acid receptor subtypes activated. Proc Natl Acad Sci U S A 90:9576–9580

    Article  PubMed  CAS  Google Scholar 

  • Cepeda C, Levine MS (1998) Dopamine and N-methyl-d-aspartate receptor interactions in the neostriatum. Dev Neurosci 20:1–18

    Article  PubMed  CAS  Google Scholar 

  • Coccurello R, Adriani W, Oliverio A, Mele A (2000) Effect of intra-accumbens dopamine receptor agents on reactivity to spatial and non-spatial changes in mice. Psychopharmacology 152:189–199

    Article  PubMed  CAS  Google Scholar 

  • Coccurello R, Oliverio A, Mele A (2012) Dopamine-glutamate interplay in the ventral striatum modulates spatial learning in a receptor subtype-dependent manner. Neuropsychopharmacology 37:1122–1133

    Article  PubMed  CAS  Google Scholar 

  • De Leonibus E, Oliverio A, Mele A (2005) A study on the role of the dorsal striatum and the nucleus accumbens in allocentric and egocentric spatial memory consolidation. Learn Mem 12:491–503

    Article  PubMed  Google Scholar 

  • Ferretti V, Florian C, Costantini VJ, Roullet P, Rinaldi A, De Leonibus E, Oliverio A, Mele A (2005) Co-activation of glutamate and dopamine receptors within the nucleus accumbens is required for spatial memory consolidation in mice. Psychopharmacology 179:108–116

    Article  PubMed  CAS  Google Scholar 

  • Flores-Hernandez J, Cepeda C, Hernandez-Echeagaray E, Calvert CR, Jokel ES, Fienberg AA, Greengard P, Levine MS (2002) Dopamine enhancement of NMDA currents in dissociated medium-sized striatal neurons: role of D1 receptors and DARPP-32. J Neurophysiol 88:3010–3020

    Article  PubMed  CAS  Google Scholar 

  • Floresco SB (2007) Examen critique. Dopaminergic regulation of limbic-striatal interplay. J Psychiatry Neurosci 32:400–411

    PubMed  Google Scholar 

  • Floresco SB, Seamans JK, Phillips AG (1996) Differential effects of lidocaine infusions into the ventral CA1/subiculum or the nucleus accumbens on the acquisition and retention of spatial information. Behav Brain Res 81:163–171

    Article  PubMed  CAS  Google Scholar 

  • Franklin BJ, Paxinos G (1997) The mouse brain in stereotaxic coordinates. Academic, San Diego

    Google Scholar 

  • Geldwert D, Norris JM, Feldman IG, Schulman JJ, Joyce MP, Rayport S (2006) Dopamine presynaptically and heterogeneously modulates nucleus accumbens medium-spiny neuron GABA synapses in vitro. BMC Neurosci 30:53

    Article  Google Scholar 

  • Groenewegen HJ, Wright CI, Beijer AV, Voorn P (1999) Convergence and segregation of ventral striatal inputs and outputs. Ann NY Acad Sci 877:49–63

    Article  PubMed  CAS  Google Scholar 

  • Hernandez PJ, Andrzejewski ME, Sadeghian K, Panksepp JB, Kelley AE (2005) AMPA/kainate, NMDA, and dopamine D1 receptor function in the nucleus accumbens core: a context-limited role in the encoding and consolidation of instrumental memory. Learn Mem 12:285–295

    Article  PubMed  Google Scholar 

  • Hernández-Echeagaray E, Starling AJ, Cepeda C, Levine MS (2004) Modulation of AMPA currents by D2 dopamine receptors in striatal medium-sized spiny neurons: are dendrites necessary? Eur J Pharmacol 19:2455–2463

    Google Scholar 

  • Ikemoto S, Panksepp J (1999) The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seeking. Brain Res Rev 31:6–41

    Article  PubMed  CAS  Google Scholar 

  • Ito R, Robbins TW, Pennartz CM, Everitt BJ (2008) Functional interaction between the hippocampus and nucleus accumbens shell is necessary for the acquisition of appetitive spatial context conditioning. J Neurosci 28:6950–59

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi Y (1997) Neostriatal cell subtypes and their functional roles. Neurosci Res 27:1–8

    Article  PubMed  CAS  Google Scholar 

  • Kelley AE (2004) Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning. Neurosci Biobehav Rev 27:765–776

    Article  PubMed  Google Scholar 

  • Klein S, Hadamitzky M, Koch M, Schwabe K (2004) Role of glutamate receptors in nucleus accumbens core and shell in spatial behaviour of rats. Neuroscience 128:229–328

    Article  PubMed  CAS  Google Scholar 

  • Levine MS, Li Z, Cepeda C, Cromwell HC, Altemus KL (1996) Neuromodulatory actions of dopamine on synaptically-evoked neostriatal responses in slices. Synapse 24:65–78

    Article  PubMed  CAS  Google Scholar 

  • Maldonado-Irizarry CS, Kelley AE (1995) Excitatory amino acid receptors within nucleus accumbens subregions differentially mediate spatial learning in the rat. Behav Pharmacol 6:527–539

    Article  PubMed  CAS  Google Scholar 

  • Mogenson GJ, Jones DL, Yim CY (1980) From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol 14:69–97

    Article  PubMed  CAS  Google Scholar 

  • Managò F, Castellano C, Oliverio A, Mele A, De Leonibus E (2009) Role of dopamine receptors subtypes, D1-like and D2-like, within the nucleus accumbens subregions, core and shell, on memory consolidation in the one-trial inhibitory avoidance task. Learn Mem 16:46–52

    Article  PubMed  Google Scholar 

  • Nicola SM, Surmeier J, Malenka RC (2000) Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu Rev Neurosci 23:185–215

    Article  PubMed  CAS  Google Scholar 

  • Pickel VM, Nirenberg MJ, Milner TA (1996) Ultrastructural view of central catecholaminergic transmission: immunocytochemical localization of synthesizing enzymes, transporters and receptors. J Neurocytol 25:843–856

    Article  PubMed  CAS  Google Scholar 

  • Poucet B, Chapuis N, Durup M, Thinus-Blanc C (1986) A study of exploratory behavior as an index of spatial knowledge in hamsters. Animal Learn Behav 14:93–100

    Article  Google Scholar 

  • Roullet P, Sargolini F, Oliverio A, Mele A (2001) NMDA and AMPA antagonist infusions into the ventral striatum impair different steps of spatial information processing in a non-associative task in mice. J Neurosci 21:2143–2149

    PubMed  CAS  Google Scholar 

  • Setlow B, McGaugh JL (1998) Sulpiride infused into the nucleus accumbens posttraining impairs memory of spatial water maze training. Behav Neurosci 112(3):603–10

    Article  PubMed  CAS  Google Scholar 

  • Sesack SR, Carr DB, Omelchenko N, Pinto A (2003) Anatomical substrate for glutamate–dopamine interactions—evidence for specificity of connections and extrasynaptic actions. Ann NY Acad Sci 1003:36–52

    Article  PubMed  CAS  Google Scholar 

  • Smith AD, Bolam JP (1990) The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones. Trends Neurosci 13:259–265

    Article  PubMed  CAS  Google Scholar 

  • Smith Y, Bennett BD, Bolam JP, Parent A, Sadikot AF (1994) Synaptic relationships between dopaminergic afferents and cortical or thalamic input in the sensorimotor territory of the striatum in monkey. J Comp Neurol 344:1–19

    Article  PubMed  CAS  Google Scholar 

  • Smith-Roe SL, Sadeghian K, Kelley AE (1999) Spatial learning and performance in the radial arm maze is impaired after N-methyl-d-aspartate (NMDA) receptor blockade in striatal subregions. Behav Neurosci 113:703–717

    Article  PubMed  CAS  Google Scholar 

  • Smith-Roe SL, Kelley AE (2000) Coincident activation of NMDA and dopamine D1 receptors within the nucleus accumbens core is required for appetitive instrumental learning. J Neurosci 20:7737–7742

    PubMed  CAS  Google Scholar 

  • Sutherland RJ, Rodriguez AJ (1989) The role of the fornix/fimbria and some related subcortical structures in place learning and memory. Behav Brain Res 32:265–277

    Article  PubMed  CAS  Google Scholar 

  • Svensson A, Carlsson ML, Carlsson A (1992) Interaction between glutamatergic and dopaminergic tone in the nucleus accumbens of mice: evidence for a dual glutamatergic function with respect to psychomotor control. J Neural Transm Gen Sect 88:235–40

    Article  PubMed  CAS  Google Scholar 

  • Svensson A, Carlsson ML, Carlsson A (1995) Crucial role of the accumbens nucleus in the neurotransmitter interactions regulating motor control in mice. J Neural Transm Gen Sect 101:127–48

    Article  PubMed  CAS  Google Scholar 

  • Thinus-Blanc C, Durup M, Poucet B (1992) The spatial parameters encoded by hamsters during exploration: a further study. Behav Process 26:43–57

    Article  Google Scholar 

  • Usiello A, Sargolini F, Roullet P, Ammassari-Teule M, Passino E, Oliverio A, Mele A (1998) N-Methyl-d-aspartate receptors in the nucleus accumbens are involved in detection of spatial novelty in mice. Psychopharmacology 137:175–183

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Mele.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coccurello, R., Oliverio, A. & Mele, A. Impairing effect of amphetamine and concomitant ionotropic glutamate receptors blockade in the ventral striatum on spatial learning in mice. Psychopharmacology 227, 651–660 (2013). https://doi.org/10.1007/s00213-013-2989-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-013-2989-9

Keywords

Navigation