Skip to main content
Log in

Chronic treatment with a selective inhibitor of casein kinase I δ/ε yields cumulative phase delays in circadian rhythms

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Introduction

Casein kinase I ε/δ phosphorylates certain clock-related proteins as part of a complex arrangement of transcriptional/translational feedback loops that comprise the circadian oscillator in mammals. Pharmacologic inhibition leads to a delay of the oscillations with the magnitude of this effect dependent upon the timing of drug administration.

Objective

Earlier studies by our lab described the actions of a selective CKI ε/δ inhibitor, PF-670462, on circadian behavior following acute dosing; the present work extended these studies to chronic once-daily treatment.

Methods

Gross motor activity was used to estimate the circadian rhythms of rats maintained under a 12 L:12 D cycle. PF-670462, 10 or 30 mg/kg/day s.c., was administered once daily for 20 days either at ZT6 or ZT11 (i.e., 6 or 11 h after light onset).

Results

Chronic administration of PF-670462, performed at a fixed time of day, produced delays in the activity onsets of rats that cumulated with the duration of dosing. Dosing at ZT11 yielded more robust delays than dosing at ZT6 in keeping with earlier phase–response analyses with this agent.

Conclusions

The magnitude of the shifts in activity onsets achieved with chronic dosing of PF-670462 appears to be a function of the dose and the previously established phase relationship. Its cumulative effect further suggests that the pharmacodynamic t 1/2 of the drug greatly exceeds its pharmacokinetic one. Most importantly, these changes in circadian behavior occurred in the presence of a fixed L:D cycle, confirming the drug to be a robust modulator of circadian phase in the presence of the natural zeitgeber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agostino PV, Plano SA, Golombek DA (2008) Circadian and pharmacological regulation of casein kinase I in the hamster suprachiasmatic nucleus. J Genetics 87:467–471

    Article  CAS  Google Scholar 

  • Akashi M, Tsuchiya Y, Yoshino T, Nishida E (2002) Control of intracellular dynamics of mammalian period proteins by casein kinase I ε (CK1ε) and CK1δ in cultured cells. Mol Cell Biol 22:1693–1703

    Article  CAS  PubMed  Google Scholar 

  • Arendt J, Skene DJ (2005) Melatonin as a chronobiotic. Sleep Med Rev 9:25–39

    Article  PubMed  Google Scholar 

  • Badura L, Swanson T, Adamowicz W, Adams J, Cianfrogna J, Fisher K, Holland J, Kleiman R, Nelson F, Reynolds L, Schaeffer E, St. Germain K, Tate B, Sprouse J (2007) An inhibitor of casein kinase Iε induces phase delays in circadian rhythms under free-running and entrained conditions. J Pharmacol Exp Ther 322:730–738

    Article  CAS  PubMed  Google Scholar 

  • Barnard AR, Nolan PM (2008) When clocks go bad: neurobehavioral consequences of disrupted circadian timing. PLoS Genetics 4:e1000040

    Article  PubMed  Google Scholar 

  • Bjorvatn B, Pallesen S (2009) A practical approach to circadian rhythm sleep disorders. Sleep Med Rev 13:47–60

    Article  PubMed  Google Scholar 

  • Buijs RM, Scheer FA, Kreier F, Yi C, Bos N, Goncharuk VD, Kalsbeek A (2006) Organization of circadian functions: interaction with the body. Prog Brain Res 153:341–360

    Article  CAS  PubMed  Google Scholar 

  • Cohen-Mansfield J, Garfinkel D, Lipson S (2000) Melatonin for treatment of sundowning in elderly persons with dementia—a preliminary study. Arch Gerontol Geriatr 31:65–76

    Article  CAS  PubMed  Google Scholar 

  • Cuninkova L, Brown SA (2008) Peripheral circadian oscillators: interesting mechanisms and powerful tools. Ann NY Acad Sci 1129:358–370

    Article  PubMed  Google Scholar 

  • Curtis AM, Fitzgerald GA (2006) Central and peripheral clocks in cardiovascular and metabolic function. Ann Med 38:552–559

    Article  CAS  PubMed  Google Scholar 

  • Daan S, Pittendrigh CS (1976) A functional analysis of circadian pacemakers in nocturnal rodents. II. The variability of phase response curves. J Comp Physiol 106:253–266

    Article  Google Scholar 

  • Dardente H, Cermakian N (2007) Molecular circadian rhythms in central and peripheral clocks in mammals. Chronobiol Int 24:195–213

    Article  CAS  PubMed  Google Scholar 

  • Dunlap JC, Loros JJ (2006) How fungi keep time: circadian system in Neurospora and other fungi. Curr Opin Microbiol 9:579–587

    Article  CAS  PubMed  Google Scholar 

  • Eide EJ, Vielhaber EL, Hinz W, Virshup DM (2002) The circadian regulatory proteins BMAL1 and cryptochromes are substrates of casein kinase Iε. J Biol Chem 277:17248–17254

    Article  CAS  PubMed  Google Scholar 

  • Eide EJ, Woolf MF, Kang H, Woolf P, Hurst W, Camacho F, Vielhaber EL, Giovanni A, Virshup DM (2005) Control of mammalian circadian rhythm by CKIε-regulated proteasome-mediated PER2 degradation. Mol Cell Biol 25:2795–2807

    Article  CAS  PubMed  Google Scholar 

  • Etchegaray JP, Machida KK, Noton E, Constance CM, Dallmann R, Di Napoli MN, DeBruyne JP, Lambert CM, Yu EA, Reppert SM, Weaver DR (2009) Casein kinase 1 delta regulates the pace of the mammalian circadian clock. Mol Cell Biol 29:3853–3866

    Article  CAS  PubMed  Google Scholar 

  • Goodwin GM, Rouillon F, Emsley R (2007) Long term efficacy of agomelatine, a novel antidepressant, in the prevention of relapse in out-patients with major depressive disorder. Eur Neuropsychopharm 17(suppl 4):S361

    Article  Google Scholar 

  • Hastings MH, Maywood ES, Reddy AB (2008) Two decades of circadian time. J Neuroendocrinol 20:812–819

    Article  CAS  PubMed  Google Scholar 

  • Ishida Y, Yagita K, Fukuyama T, Nishimura M, Nagano M, Shigeyoshi Y, Yamaguchi S, Komori T, Okamura H (2001) Constitutive expression and delayed light response of casein kinase Iε and Iδ mRNAs in the mouse suprachiasmatic nucleus. J Neurosci Res 64:612–616

    Article  CAS  PubMed  Google Scholar 

  • Kennedy SH, Emsley R (2006) Placebo-controlled trial of agomelatine in the treatment of major depressive disorder. Eur Neuropsychopharm 16:93–100

    Article  CAS  Google Scholar 

  • Klevecz RR, Li CM (2007) Evolution of the clock from yeast to man by period-doubling folds in the cellular oscillator. Cold Spring Harb Symp Quant Biol 72:421–429

    Article  CAS  PubMed  Google Scholar 

  • Kondratov RV, Antoch MP (2007) The clock proteins, aging and tumorigenesis. Cold Spring Harb Symp Quant Biol 72:477–482

    Article  CAS  PubMed  Google Scholar 

  • Kripke DF, Mullaney DJ, Atkinson M, Wolf S (1978) Circadian rhythm disorders in manic-depressives. Biol Psychiatr 13:335–351

    CAS  Google Scholar 

  • Lee C, Etchegaray J-P, Cagampang FRA, Loudon ASI, Reppert SM (2001) Posttranslational mechanisms regulate the mammalian circadian clock. Cell 107:855–867

    Article  CAS  PubMed  Google Scholar 

  • Lenox RH, Gould TD, Manji HK (2002) Endophenotypes in bipolar disorder. Am J Med Genet 114:391–406

    Article  PubMed  Google Scholar 

  • Loo H, Hale A, D’Haenen H (2002) Determination of the dose of agomelatine, a melatoninergic agonist and selective 5-HT(2C) antagonist, in the treatment of major depressive disorder: a placebo-controlled dose range study. Int Clin Psychopharmacol 17:239–247

    Article  CAS  PubMed  Google Scholar 

  • Mahlberg R, Kunz D, Sutej I, Kühl K-P, Wellheg R (2004) Melatonin treatment of day–night rhythm disturbances and sundowning in Alzheimer disease. J Clin Psychopharmacol 24:456–458

    Article  PubMed  Google Scholar 

  • Maywood ES, O’Neill JS, Chesham JE, Hastings MH (2007) The circadian clockwork of the suprachiasmatic nuclei—analysis of a cellular oscillator that drives endocrine rhythms. Endocrinol 148:5624–5634

    Article  CAS  Google Scholar 

  • Pickard GE, Sollars PJ (2008) The suprachiasmatic nucleus. In: Masland R, Albright TD (eds) The senses: vision, 1. Academic, San Diego, pp 537–555

    Google Scholar 

  • Prasai MJ, George JT, Scott EM (2008) Molecular clocks, type 2 diabetes and cardiovascular disease. Diab Vasc Dis Res 5:89–95

    Article  PubMed  Google Scholar 

  • Rosbash M, Bradley S, Kadener S, Li Y, Luo W, Menet JS, Nagoshi E, Palm K, Schoer R, Shang Y, Tang CH (2007) Transcriptional feedback and definition of the circadian pacemaker in Drosophila and animals. Cold Spring Harb Symp Quant Biol 72:75–83

    Article  CAS  PubMed  Google Scholar 

  • Scheer FAJL, Hilton MF, Mantzoros CS, Shea SA (2009) Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci USA 106:4453–4458

    Article  CAS  PubMed  Google Scholar 

  • Sekine T, Yamaguchi T, Hamano K, Young MW, Shimoda M, Saez L (2008) Casein kinase I epsilon does not rescue double-time function in Drosophila despite evolutionarily conserved roles in the circadian clock. J Biol Rhythms 23:3–15

    Article  CAS  PubMed  Google Scholar 

  • Sollars PJ, Kimble DP, Pickard GE (1995) Restoration of circadian behavior by anterior hypothalamic heterografts. J Neurosci 15:2109–2122

    CAS  PubMed  Google Scholar 

  • Sprouse J, Reynolds L, Swanson TA, Engwall M (2009) Inhibition of casein kinase I ε/δ produces phase shifts in the circadian rhythms of Cynomolgus monkeys. Psychopharmacol 204:735–742

    Article  CAS  Google Scholar 

  • Stratmann M, Schibler U (2006) Properties, entrainment, and physiological functions of mammalian peripheral oscillators. J Biol Rhythms 21:494–506

    Article  CAS  PubMed  Google Scholar 

  • Summer TL, Ferraro JS, McCormack CE (1984) Phase-response and Aschoff illuminance curves for locomotor activity of the rat. Am J Physiol 246:R299–R304

    CAS  PubMed  Google Scholar 

  • Sumová A, Bendová Z, Sládek M, El-Hennamy R, Matejů K, Polidarová L, Sosniyenko S, Illnerová H (2008) Circadian molecular clocks tick along ontogenesis. Physiol Res 57(suppl 3):S139–S148

    PubMed  Google Scholar 

  • Takahashi JS, Hong HK, Ko CH, McDearmon EL (2008) The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat Rev Genet 9:764–775

    Article  CAS  PubMed  Google Scholar 

  • Turek FW (2007) From circadian rhythms to clock genes in depression. Int Clin Psychopharmacol 22(suppl 2):S1–S8

    Article  PubMed  Google Scholar 

  • Vanselow K, Kramer A (2007) Role of phosphorylation in the mammalian circadian clock. Cold Spring Harb Symp Quant Biol 72:167–176

    Article  CAS  PubMed  Google Scholar 

  • Vielhaber E, Eide E, Gao Z-H, Virshup DM (2000) Nuclear entry of the circadian regulator mPER1 is controlled by mammalian casein kinase I ε. Mol Cell Biol 20:4888–4899

    Article  CAS  PubMed  Google Scholar 

  • Walton KM, Fisher K, Rubitski D, Marconi M, Meng QJ, Sládek M, Adams J, Bass M, Chandrasekaran R, Butler T, Griffor M, Rajamohan F, Serpa M, Chen Y, Claffey M, Hastings M, Loudon A, Maywood E, Ohren J, Doran A, Wager TT (2009) Selective inhibition of casein kinase 1epsilon minimally alters circadian clock period. J Pharmacol Exp Ther 330:430–439

    Article  CAS  PubMed  Google Scholar 

  • Wirz-Justice A (2007) Biological rhythm disturbances in mood disorders. Int Clin Psychopharmacol 21(suppl 1):S11–S15

    Google Scholar 

  • Wu Y-H, Swaab DF (2007) Disturbance and strategies for reactivation of the circadian rhythm system in aging and Alzheimer’s disease. Sleep Med 8:623–636

    Article  PubMed  Google Scholar 

  • Xu Y, Padiath QS, Shapiro RE, Jones CR, Wu SC, Saigoh N, Saigoh K, Ptacek LJ, Fu Y-H (2005) Functional consequences of a CKIδ mutation causing familial advanced sleep phase syndrome. Nature 434:640–644

    Article  CAS  PubMed  Google Scholar 

  • Yu W, Hardin PE (2006) Circadian oscillators of Drosophila and mammals. J Cell Sci 119:4793–4795

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey Sprouse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sprouse, J., Reynolds, L., Kleiman, R. et al. Chronic treatment with a selective inhibitor of casein kinase I δ/ε yields cumulative phase delays in circadian rhythms. Psychopharmacology 210, 569–576 (2010). https://doi.org/10.1007/s00213-010-1860-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-010-1860-5

Keywords

Navigation