, Volume 183, Issue 4, pp 429-438
Date: 15 Nov 2005

The mGluR5 antagonist MPEP selectively inhibits the onset and maintenance of ethanol self-administration in C57BL/6J mice

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Rationale

Many of the biochemical, physiological, and behavioral effects of ethanol are known to be mediated by ionotropic glutamate receptors. Emerging evidence implicates metabotropic glutamate receptors (mGluRs) in the biobehavioral effects of ethanol and other drugs of abuse, but there is little information regarding the role of mGluRs in the reinforcing effects of ethanol.

Materials and methods

Male C57BL/6J mice were trained to lever-press on a concurrent fixed ratio 1 schedule of ethanol (10% v/v) vs water reinforcement during 16-h sessions. Effects of mGluR1, mGluR2/3, and mGluR5 antagonists were then tested on parameters of ethanol self-administration behavior.

Results

The mGluR5 antagonist MPEP (1–10 mg/kg, i.p.) dose-dependently reduced ethanol-reinforced responding but had no effect on concurrent water-reinforced responding. Analysis of the temporal pattern of responding showed that MPEP reduced ethanol-reinforced responding during peak periods of behavior occurring during the early hours of the dark cycle. Further analysis showed that MPEP reduced the number of ethanol response bouts and bout-response rate. MPEP also produced a 13-fold delay in ethanol response onset (i.e., latency to the first response) with no corresponding effect on water response latency or locomotor activity. The mGluR1 antagonist CPCCOEt (1–10 mg/kg, i.p.) or the mGluR2/3 antagonist LY 341495 (1–30 mg/kg, i.p.) failed to alter ethanol- or water-reinforced responding.

Conclusions

These data indicate that mGlu5 receptors selectively regulate the onset and maintenance of ethanol self-administration in a manner that is consistent with reduction in ethanol’s reinforcement function.