, Volume 74, Issue 3, pp 261-282

Anisotropic mesh refinement in stabilized Galerkin methods

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Summary.

The numerical solution of a convection-diffusion-reaction model problem is considered in two and three dimensions. A stabilized finite element method of Galerkin/Least-square type accomodates diffusion-dominated as well as convection- and/or reaction-dominated situations. The resolution of boundary layers occuring in the singularly perturbed case is achieved using anisotropic mesh refinement in boundary layer regions. In this paper, the standard analysis of the stabilized Galerkin method on isotropic meshes is extended to more general meshes with boundary layer refinement. Simplicial Lagrangian elements of arbitrary order are used.

Received March 6, 1995 / Revised version received August 18, 1995