Numerische Mathematik

, Volume 115, Issue 2, pp 261–287

Error estimate of the P1 nonconforming finite element method for the penalized unsteady Navier-Stokes equations

Article

DOI: 10.1007/s00211-009-0277-8

Cite this article as:
Lu, X. & Lin, P. Numer. Math. (2010) 115: 261. doi:10.1007/s00211-009-0277-8

Abstract

We consider a finite element method for the penalty formulation of the time dependent Navier-Stokes equations. Usually the improper choice of the finite element space will lead that the error estimate (inversely) depends on the penalty parameter \({\epsilon}\). We use the classical P1 nonconforming finite element space for the spatial discretization. Optimal \({\epsilon}\)-uniform error estimations for both velocity and pressure are obtained.

Mathematics Subject Classification (2000)

65N3076D05

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Johann Radon Institute for Computational and Applied Mathematics (RICAM)Austrian Academy of SciencesLinzAustria
  2. 2.Division of MathematicsUniversity of DundeeDundeeScotland, UK