Skip to main content
Log in

The heterogeneous multiscale finite element method for elliptic homogenization problems in perforated domains

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this contribution we analyze a generalization of the heterogeneous multiscale finite element method for elliptic homogenization problems in perforated domains. The method was originally introduced by E and Engquist (Commun Math Sci 1(1):87–132, 2003) for homogenization problems in fixed domains. It is based on a standard finite element approach on the macroscale, where the stiffness matrix is computed by solving local cell problems on the microscale. A-posteriori error estimates are derived in L 2(Ω) by reformulating the problem into a discrete two-scale formulation (see also, Ohlberger in Multiscale Model Simul 4(1):88–114, 2005) and using duality methods afterwards. Numerical experiments are given in order to numerically evaluate the efficiency of the error estimate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdulle A.: On a priori error analysis of fully discrete heterogeneous multiscale FEM. Multiscale Model. Simul. 4(2), 447–459 (2005) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  2. Abdulle A., E W.: Finite difference heterogeneous multi-scale method for homogenization problems. J. Comput. Phys. 191(1), 18–39 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Abdulle, A., Schwab, C.: Heterogeneous multiscale FEM for diffusion problems on rough surfaces. Multiscale Model. Simul. 3(1), 195–220 (2004/2005) (electronic)

    Google Scholar 

  4. Allaire G.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23(6), 1482–1518 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  5. Alt H.W.: 4Lineare Funktionalanalysis. Springer, Berlin (2002)

    MATH  Google Scholar 

  6. Bensoussan, A., Lions, J.-L., Papanicolaou, G.: Asymptotic analysis for periodic structures. Studies in Mathematics and its Applications, vol. 5. North-Holland Publishing Co., Amsterdam (1978)

  7. Ciarlet, P.G.: The finite element method for elliptic problems. Studies in Mathematics and its Applications, vol. 4. North-Holland Publishing Co., Amsterdam (1978)

  8. Conca C., Gómez D., Lobo M., Pérez M.E.: Homogenization of periodically perforate media. Indiana Univ. Math. J. 48(4), 1447–1470 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Esposito A.C., D’Apice C., Gaudiello A.: A homogenization problem in a perforated domain with both Dirichlet and Neumann conditions on the boundary of the holes. Asymptot. Anal. 31(3–4), 297–316 (2002)

    MATH  MathSciNet  Google Scholar 

  10. E W., Engquist B.: The heterogeneous multiscale methods. Commun. Math. Sci. 1(1), 87–132 (2003)

    MATH  MathSciNet  Google Scholar 

  11. E W., Engquist B.: Multiscale modeling and computation. Notices Am. Math. Soc. 50(9), 1062–1070 (2003)

    MATH  MathSciNet  Google Scholar 

  12. E, W., Engquist, B.: The heterogeneous multi-scale method for homogenization problems. In: Multiscale Methods in Science and Engineering. Lect. Notes Comput. Sci. Eng., vol. 44, pp. 89–110. Springer, Berlin (2005)

  13. E W., Ming P., Zhang P.: Analysis of the heterogeneous multiscale method for elliptic homogenization problems. J. Am. Math. Soc. 18(1), 121–156 (2005) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  14. Efendiev Y., Hou T.: Multiscale finite element methods for porous media flows and their applications. Appl. Numer. Math. 57(5–7), 577–596 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hoang, V.H., Schwab, C.: High-dimensional finite elements for elliptic problems with multiple scales. Multiscale Model. Simul. 3(1), 168–194 (2004/2005) (electronic)

    Google Scholar 

  16. Thomas Y.H., Wu X.-H.: A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134(1), 169–189 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  17. Thomas Y.H., Wu X.-H., Cai Z.: Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. Math. Comp. 68(227), 913–943 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. Matache, A.-M.: Sparse two-scale FEM for homogenization problems. In: Proceedings of the Fifth International Conference on Spectral and High Order Methods (ICOSAHOM-01) (Uppsala), vol. 17, pp. 659–669 (2002)

  19. Matache A.-M., Schwab C.: Two-scale FEM for homogenization problems. M2AN Math. Model. Numer. Anal. 36(4), 537–572 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ming P., Zhang P.: Analysis of the heterogeneous multiscale method for parabolic homogenization problems. Math. Comp. 76(257), 153–177 (2007) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  21. Oden J.T., Vemaganti K.S.: Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials. I. Error estimates and adaptive algorithms. J. Comput. Phys. 164(1), 22–47 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  22. Ohlberger M.: A posteriori error estimates for the heterogeneous multiscale finite element method for elliptic homogenization problems. Multiscale Model. Simul. 4(1), 88–114 (2005) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  23. Oleĭnik, O.A., Shamaev, A.S., Yosifian, G.A.: Mathematical problems in elasticity and homogenization. Studies in Mathematics and its Applications, vol. 26. North-Holland Publishing Co., Amsterdam (1992)

  24. Persson, J.: A non-periodic and two-dimensional example of elliptic homogenization (2009, preprint)

  25. Schwab, C., Matache, A.-M.: Generalized FEM for homogenization problems. In: Multiscale and multiresolution methods. Lect. Notes Comput. Sci. Eng., vol. 20, pp. 197–237. Springer, Berlin (2002)

  26. Szabo B., Babuska I.: Finite Element Analysis, chapter 6.3, pp. 105–112. Wiley, London (1991)

    Google Scholar 

  27. Vemaganti K.S., Oden J.T.: Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials. II. A computational environment for adaptive modeling of heterogeneous elastic solids. Comput. Methods Appl. Mech. Eng. 190(46–47), 6089–6124 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Henning.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henning, P., Ohlberger, M. The heterogeneous multiscale finite element method for elliptic homogenization problems in perforated domains. Numer. Math. 113, 601–629 (2009). https://doi.org/10.1007/s00211-009-0244-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-009-0244-4

Mathematics Subject Classification (2000)

Navigation