Numerische Mathematik

, Volume 104, Issue 2, pp 129–150

Interpolation error estimates in W1,p for degenerate Q1 isoparametric elements


DOI: 10.1007/s00211-006-0018-1

Cite this article as:
Acosta, G. & Monzón, G. Numer. Math. (2006) 104: 129. doi:10.1007/s00211-006-0018-1


Optimal order error estimates in H1, for the Q1 isoparametric interpolation were obtained in Acosta and Durán (SIAM J Numer Anal37, 18–36, 1999) for a very general class of degenerate convex quadrilateral elements. In this work we show that the same conlusions are valid in W1,p for 1≤ p < 3 and we give a counterexample for the case p  ≥  3, showing that the result cannot be generalized for more regular functions. Despite this fact, we show that optimal order error estimates are valid for any p  ≥  1, keeping the interior angles of the element bounded away from 0 and π, independently of the aspect ratio. We also show that the restriction on the maximum angle is sharp for p  ≥  3.

AMS Subject Classification

65N15 65N30 

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Universidad Nacional De General SarmientoBuenos AiresArgentina

Personalised recommendations