1.

Arrow, K., Hurwicz, L., Uzawa, H.: Studies in Nonlinear Programming. Stanford University Press, Stanford, 1958

2.

Axelsson, O.: Iterative Solution Methods. Cambridge University Press, Cambridge, 1994

3.

Bai, Z.-Z.: Parallel Iterative Methods for Large-Scale Systems of Algebraic Equations, Ph.D. Thesis, Department of Mathematics, Shanghai University of Science and Technology, Shanghai, March, 1993

4.

Bai, Z.-Z.: On the convergence of the generalized matrix multisplitting relaxed methods. Comm. Numer. Methods Engrg.

**11**, 363–371 (1995)

CrossRef5.

Bai, Z.-Z.: A class of modified block SSOR preconditioners for symmetric positive definite systems of linear equations. Adv. Comput. Math.

**10**, 169–186 (1999)

CrossRef6.

Bai, Z.-Z.: Modified block SSOR preconditioners for symmetric positive definite linear systems. Ann. Oper. Res.

**103**, 263–282 (2001)

CrossRef7.

Bai, Z.-Z., Golub, G.H., Pan, J.-Y.: Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems. Numer. Math.

**98**, 1–32 (2004)

CrossRef8.

Bai, Z.-Z., Li, G.-Q.: Restrictively preconditioned conjugate gradient methods for systems of linear equations. IMA J. Numer. Anal.

**23**, 561–580 (2003)

CrossRef9.

Bai, Z.-Z., Wang, D.-R.: Generalized matrix multisplitting relaxation methods and their convergence. Numer. Math. J. Chinese Univ. (English Ser.) **2**, 87–100 (1993)

10.

Bramble, J.H., Pasciak, J.E., Vassilev, A.T.: Analysis of the inexact Uzawa algorithm for saddle point problems. SIAM J. Numer. Anal.

**34**, 1072–1092 (1997)

CrossRef11.

Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York and London, 1991

12.

Chan, R.H., Ng, M.K.: Conjugate gradient methods for Toeplitz systems. SIAM Rev.

**38**, 427–482 (1996)

CrossRef13.

Elman, H.C., Golub, G.H.: Inexact and preconditioned Uzawa algorithms for saddle point problems. SIAM J. Numer. Anal.

**31**, 1645–1661 (1994)

CrossRef14.

Fischer, B., Ramage, R., Silvester, D.J., Wathen, A.J.: Minimum residual methods for augmented systems. BIT **38**, 527–543 (1998)

15.

Fortin, M., Glowinski, R.: Augmented Lagrangian Methods, Applications to the Numerical Solution of Boundary Value Problems. North-Holland, Amsterdam, 1983

16.

Golub, G.H., Van Loan, C.F.: Matrix Computations. 3rd Edition, The Johns Hopkins University Press, Baltimore and London, 1996

17.

Golub, G.H., Wu, X., Yuan, J.-Y.: SOR-like methods for augmented systems. BIT

**41**, 71–85 (2001)

CrossRef18.

Henrici, P.: Applied and Computational Complex Analysis. Vol. **1**: Power Series, Integration, Conformal Mapping and Location of Zeros, John Wiley & Sons, New York, London and Sydney, 1974

19.

Hestenes, M.R., Stiefel, E.L.: Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bureau Standards Section B **49**, 409–436 (1952)

20.

Hu, J.-G.: Convergence of a generalized iterative matrix. Math. Numer. Sinica **6**, 174–181 (1984) (In Chinese)

21.

Li, C.-J., Li, B.-J., Evans, D.J.: A generalized successive overrelaxation method for least squares problems. BIT **38**, 347–356 (1998)

22.

Li, C.-J., Li, Z., Evans, D.J., Zhang, T.: A note on an SOR-like method for augmented systems. IMA J. Numer. Anal.

**23**, 581–592 (2003)

CrossRef23.

Miller, J.J.H.: On the location of zeros of certain classes of polynomials with applications to numerical analysis. J. Inst. Math. Appl. **8**, 397–406 (1971)

24.

Ng, M.K.: Preconditioning of elliptic problems by approximation in the transform domain. BIT **37**, 885–900 (1997)

25.

Song, Y.-Z.: On the convergence of the generalized AOR method. Linear Algebra Appl.

**256**, 199–218 (1997)

CrossRef26.

Song, Y.-Z.: On the convergence of the MAOR method. J. Comput. Appl. Math.

**79**, 299–317 (1997)

CrossRef27.

Varga, R.S.: Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs, N.J., 1962

28.

Wang, X.-M.: Generalized extrapolation principle and convergence of some generalized iterative methods. Linear Algebra Appl.

**185**, 235–272 (1993)

CrossRef29.

Wang, X.-M.: Convergence for a general form of the GAOR method and its application to the MSOR method. Linear Algebra Appl.

**196**, 105–123 (1994)

CrossRef30.

Young, D.M.: Iterative Solutions of Large Linear Systems. Academic Press, New York, 1971