Skip to main content
Log in

Biphasic characteristic of interactions between stiripentol and carbamazepine in the mouse maximal electroshock-induced seizure model: a three-dimensional isobolographic analysis

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The anticonvulsant effects produced by stiripentol (STP), carbamazepine (CBZ), and their combination in the maximal electroshock (MES)-induced seizures in mice were investigated using three-dimensional (3D) isobolographic analysis. With 3D isobolography, the combinations of both drugs at the fixed-ratios of 1:3, 1:1, and 3:1 for 16%, 50% and 84% antiseizure effects, respectively, were examined in order to evaluate the preclinical characteristics of the interactions between STP and CBZ. Additionally, to characterize precisely the types of interactions observed in the MES test, free plasma and total brain CBZ concentrations were estimated for all fixed-ratios tested.

The 3D isobolographic analysis showed that STP and CBZ combined at the fixed-ratio of 1:3 produced supra-additive (synergistic) interactions in the MES test for the anticonvulsant effects ranging between 16% and 84%. In contrast, the combination of STP with CBZ at the fixed-ratio of 3:1 exerted sub-additive (antagonistic) interactions in 3D isobolography for all antiseizure effects examined in the MES test. Only the combination of STP and CBZ at the fixed-ratio of 1:1 was additive for the investigated effects (16%, 50% and 84%) in 3D isobolography. Pharmacokinetic evaluation of CBZ concentrations revealed that STP increased both free plasma and total brain CBZ concentrations for all fixed-ratio combinations tested (1:3, 1:1 and 3:1).

In conclusion, the 3D isobolographic findings suggest that the combination of STP with CBZ exerted biphasic characteristics of interactions in the MES test, despite the pharmacokinetic increase in CBZ content in plasma and brains of experimental animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

3D:

three-dimensional

AED:

antiepileptic drug

CBZ:

carbamazepine

MES:

maximal electroshock seizure test

STP:

stiripentol

References

  • Berenbaum MC (1989) What is synergy? Pharmacol Rev 41:93–141. Erratum in (1990) Pharmacol Rev 41:422

    PubMed  CAS  Google Scholar 

  • Brodie MJ, Schachter SC (2001) Fast Facts-Epilepsy, 2nd edn. Health Press, Oxford, UK

    Google Scholar 

  • Cadart M, Marchand S, Pariat C, Bouquet S, Couet W (2002) Ignoring pharmacokinetics may lead to isoboles misinterpretation: illustration with the norfloxacin-theophylline convulsant interaction in rats. Pharm Res 19:209–214

    Article  PubMed  CAS  Google Scholar 

  • Chiron C, Marchand MC, Tran A, Rey E, d’Athis P, Vincent J, Dulac O, Pons G (2000) Stiripentol in severe myoclonic epilepsy in infancy: a randomised placebo-controlled syndrome-dedicated trial. STICLO study group. Lancet 356:1638–1642

    Article  PubMed  CAS  Google Scholar 

  • Deckers CL, Czuczwar SJ, Hekster YA, Keyser A, Kubova H, Meinardi H, Patsalos PN, Renier WO, Van Rijn CM (2000) Selection of antiepileptic drug polytherapy based on mechanisms of action: the evidence reviewed. Epilepsia 41:1364–1374

    Article  PubMed  CAS  Google Scholar 

  • Finney DJ (1971) Probit analysis. 3rd edn. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Giraldo J, Vivas NM, Vila E, Badia A (2002) Assessing the (a)symmetry of concentration-effect curves: empirical versus mechanistic models. Pharmacol Ther 95:21–45

    Article  PubMed  CAS  Google Scholar 

  • Glantz SA, Slinker BK (2001) Primer of applied regression and analysis of variance. 2nd edn. MacGraw-Hill, New York

    Google Scholar 

  • Greco WR, Bravo G, Parsons JC (1995) The search for synergy: a critical review from response surface perspective. Pharmacol Rev 47:331–385

    PubMed  CAS  Google Scholar 

  • Groten JP, Feron VJ, Sühnel J (2001) Toxicology of simple and complex mixtures. Trends Pharmacol Sci 22:316–322

    Article  PubMed  CAS  Google Scholar 

  • Jonker DM, Visser SA, van der Graaf PH, Voskuyl RA, Danhof M (2005) Towards a mechanism-based analysis of pharmacodynamic drug-drug interactions in vivo. Pharmacol Ther 106:1–18

    Article  PubMed  CAS  Google Scholar 

  • Kanzawa F, Nishio K, Fukuoka K, Fukuda M, Kunimoto T, Saijo N (1997) Evaluation of synergism by a novel three-dimensional model for the combined action of cisplatin and etoposide on the growth of a human small-cell lung-cancer cell line, SBC-3. Int J Cancer 71:311–319

    Article  PubMed  CAS  Google Scholar 

  • Levy RH, Loiseau P, Guyot M, Blehaut HM, Tor J, Moreland TA (1984) Michaelis-Menten kinetics of stiripentol in normal humans. Epilepsia 25:486–491

    PubMed  CAS  Google Scholar 

  • Litchfield JT, Wilcoxon F (1949) A simplified method of evaluating dose-effect experiments. J Pharmacol Exp Ther 96:99–113

    CAS  Google Scholar 

  • Loewe S (1953) The problem of synergism and antagonism of combined drugs. Arzneimittelforschung 3:285–290

    PubMed  CAS  Google Scholar 

  • Loiseau P, Levy RH, Houin G, Rascol O, Dordain G (1990) Randomized double-blind, parallel, multicenter trial of stiripentol added to carbamazepine in the treatment of carbamazepine resistant epilepsies. An interim analysis. Epilepsia 31(Suppl. 5):618–619

    Google Scholar 

  • Löscher W, Fassbender CP, Nolting B (1991) The role of technical, biological and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. II. Maximal electroshock seizure models. Epilepsy Res 8:79–94

    Article  PubMed  Google Scholar 

  • Luszczki JJ, Czuczwar SJ (2003) Isobolographic and subthreshold methods in the detection of interactions between oxcarbazepine and conventional antiepileptics-a comparative study. Epilepsy Res 56:27–42

    Article  PubMed  CAS  Google Scholar 

  • Luszczki JJ, Czuczwar SJ (2004a) Isobolographic profile of interactions between tiagabine and gabapentin: a preclinical study. Naunyn-Schmiedeberg’s Arch Pharmacol 369:434–446

    Article  CAS  Google Scholar 

  • Luszczki JJ, Czuczwar SJ (2004b) Three-dimensional isobolographic analysis of interactions between lamotrigine and clonazepam in maximal electroshock-induced seizures in mice. Naunyn-Schmiedeberg’s Arch Pharmacol 370:369–380

    Article  CAS  Google Scholar 

  • Luszczki JJ, Czuczwar SJ (2005) Isobolographic characterisation of interactions among selected newer antiepileptic drugs in the mouse pentylenetetrazole-induced seizure model. Naunyn Schmiedeberg’s Arch Pharmacol 372:41–54

    Article  CAS  Google Scholar 

  • Luszczki JJ, Borowicz KK, Swiader M, Czuczwar SJ (2003a) Interactions between oxcarbazepine and conventional antiepileptic drugs in the maximal electroshock test in mice: an isobolographic analysis. Epilepsia 44:489–499

    Article  PubMed  CAS  Google Scholar 

  • Luszczki JJ, Czuczwar M, Kis J, Krysa J, Pasztelan I, Swiader M, Czuczwar SJ (2003b) Interactions of lamotrigine with topiramate and first-generation antiepileptic drugs in the maximal electroshock test in mice: an isobolographic analysis. Epilepsia 44:1003–1013

    Article  PubMed  CAS  Google Scholar 

  • Luszczki JJ, Swiader M, Czuczwar M, Kis J, Czuczwar SJ (2003c) Interactions of tiagabine with some antiepileptics in the maximal electroshock in mice. Pharmacol Biochem Behav 75:319–327

    Article  PubMed  CAS  Google Scholar 

  • Luszczki JJ, Ratnaraj N, Patsalos PN, Czuczwar SJ (2006) Isobolographic analysis of interactions between loreclezole and conventional antiepileptic drugs in the mouse maximal electroshock-induced seizure model. Naunyn Schmiedeberg’s Arch Pharmacol 373:169–181

    Article  CAS  Google Scholar 

  • Minto C, Schnider T (1998) Expanding clinical applications of population pharmacodynamic modelling. Br J Clin Pharmacol 46:321–333

    Article  PubMed  CAS  Google Scholar 

  • Minto CF, Schnider TW, Shafer SL (1997) Pharmacokinetics and pharmacodynamics of remifentanil. II. Model application. Anesthesiology 86:24–33

    Article  PubMed  CAS  Google Scholar 

  • Minto CF, Schnider TW, Short TG, Gregg KM, Gentilini A, Shafer SL (2000) Response surface model for anesthetic drug interactions. Anesthesiology 92:1603–1616

    Article  PubMed  CAS  Google Scholar 

  • Minto CF, Schnider TW, Gregg KM, Henthorn TK, Shafer SL (2003) Using the time of maximum effect site concentration to combine pharmacokinetics and pharmacodynamics. Anesthesiology 99:324–333

    Article  PubMed  Google Scholar 

  • Perez J, Chiron C, Musial C, Rey E, Blehaut H, d’Athis P, Vincent J, Dulac O (1999) Stiripentol: efficacy and tolerability in children with epilepsy. Epilepsia 40:1618–1626

    Article  PubMed  CAS  Google Scholar 

  • Perucca E (1995) Pharmacological principles as a basis for polytherapy. Acta Neurol Scand Suppl 162:31–34

    PubMed  CAS  Google Scholar 

  • Perucca E, Levy RH (2002) Combination therapy and drug interactions. In: Levy RH, Mattson RH, Meldrum BS, Perucca E (eds) Antiepileptic drugs, 5th edn. Lippincott Williams & Wilkins, Philadelphia, pp 96–102

    Google Scholar 

  • Pöch G (1993) Combined effects of drugs and toxic agents. Modern evaluation in theory and practice. Springer, Berlin Heidelberg Wien

    Google Scholar 

  • Porreca F, Jiang Q, Tallarida RJ (1990) Modulation of morphine antinociception by peripheral [Leu5]enkephalin: a synergistic interaction. Eur J Pharmacol 179:463–468

    Article  PubMed  CAS  Google Scholar 

  • Prichard MN, Prichard LE, Baguley WA, Nassiri MR, Shipman C (1991) Three-dimensional analysis of the synergistic cytotoxicity of gancyclowir and zidovudine. Antimicrob Agents Chemother 35:1060–1065

    PubMed  CAS  Google Scholar 

  • Prichard MN, Prichard LE, Shipman C (1993) Strategic design and tree-dimensional analysis of antiviral drug combinations. Antimicrob Agents Chemother 37:540–545

    PubMed  CAS  Google Scholar 

  • Renard F, Musial C, Tor J, Dulac O (1993) Single-blind add-on trial of stiripentol in epileptic children. Epilepsia 34(Suppl 6):74

    Google Scholar 

  • Short TG, Ho TY, Minto CF, Schnider TW, Shafer SL (2002) Efficient trial design for eliciting a pharmacokinetic-pharmacodynamic model-based response surface describing the interaction between two intravenous anesthetic drugs. Anesthesiology 96:400–408

    Article  PubMed  CAS  Google Scholar 

  • Sühnel J (1992) Zero interaction response surfaces, interaction functions and difference response surfaces for combinations of biologically active agents. Arzneimittelforschung 42:1251–1258

    PubMed  Google Scholar 

  • Sühnel J (1998) Parallel dose-response curves in combination experiments. Bull Math Biol 60:197–213

    Article  PubMed  Google Scholar 

  • Tallarida RJ (1992) Statistical analysis of drug combinations for synergism. Pain 49:93–97

    Article  PubMed  CAS  Google Scholar 

  • Tallarida RJ (2000) Drug synergism and dose-effect data analysis. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  • Tallarida RJ (2001) Drug synergism: its detection and applications. J Pharmcol Exp Ther 298:865–872

    CAS  Google Scholar 

  • Tallarida RJ (2002) The interaction index: a measure of drug synergism. Pain 98:163–168

    Article  PubMed  CAS  Google Scholar 

  • Tallarida RJ (2006) An overview of drug combination analysis with isobolograms. J Pharmcol Exp Ther (in press) DOI 10.1124/jpet.106.104117

  • Tallarida RJ, Stone DJ, McCary JD, Raffa RB (1999) Response surface analysis of synergism between morphine and clonidine. J Pharmcol Exp Ther 289:8–13

    CAS  Google Scholar 

  • Tran A, Vauzelle-Kervroedan F, Rey E, Pous G, d’Athis P, Chiron C, Dulac O, Renard F, Olive G (1996) Effect of stiripentol on carbamazepine plasma concentration and metabolism in epileptic children. Eur J Clin Pharmacol 50:497–500

    Article  PubMed  CAS  Google Scholar 

  • Van der Graaf PH, Schoemaker RC (1999) Analysis of asymmetry of agonist concentration-effect curves. J Pharmacol Toxicol Methods 41:107–115

    Article  PubMed  Google Scholar 

  • White HS, Woodhead JH, Wilcox KS, Stables JP, Kupferberg HJ, Wolf HH (2002) Discovery and preclinical development of antiepileptic drugs. In: Levy RH, Mattson RH, Meldrum BS, Perucca E (eds) Antiepileptic drugs, 5th edn. Lippincott Williams & Wilkins, Philadelphia, pp 36–48

    Google Scholar 

Download references

Acknowledgments

This study was supported by a grant (KBN 2P05D 051 26) from the State Committee for Scientific Research, Warszawa, Poland. The authors express their thanks to Dr. Jean Vincent from Biocodex Laboratoires (Gentilly, France) for the kind supply of stiripentol. Moreover, a kind gift of carbamazepine from Polfa (Starogard Gdanski, Poland) is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarogniew J. Luszczki.

Appendix

Appendix

Test for parallelism of two DRR log-probit lines according to Litchfield and Wilcoxon (1949) comprises three calculations, as follows:

  1. 1.

    The determination of the slope ratio (SR), as a quotient of slope functions for the respective DRR lines. SR=S1/S2 where, S1 and S2 are the slopes of the DRR lines for the first and second drug. Generally, SR≥1.

  2. 2.

    The calculation of the f ratio for the slope ratio (f_ratio_SR), as follows: \({\text{f\_}}_{{{\text{ratio\_SR}}}} {\text{ = sqrt}}{\left\{ {{\left[ {{\text{log}}{\left( {{\text{f\_}}_{{{\text{ratio\_SR1}}}} } \right)}} \right]}^{2} + {\left[ {log{\left( {{\text{f\_}}_{{ratio{\text{\_}}SR{\text{2}}}} } \right)}} \right]}^{2} } \right\}}\)

    where, f_ratio_S1 and f_ratio_S2 are the f ratios for the slope function for the first and second drug, respectively; sqrt is the square root of the expression in parentheses {}; log is the logarithm to the base 10.

    Noticeably, the f_ratio_S1 is calculated, as follows: \({\text{f\_}}_{{{\text{ratio\_S1}}}} = {\text{A}}^{{{\text{2}}{\text{.77/sqrt}}{\left( {{\text{N}}} \right)}}} \)

    where A=10a

    a=1.1×(logS1)2/logR

    R=(largest dose)/(smallest dose of a drug used).

    Hence, \({\text{A = 10}}^{{{\text{1}}{\text{.1}} \times {{\left[ {{\left( {\log {\text{S1}}} \right)}\hat{}2} \right]}} \mathord{\left/ {\vphantom {{{\left[ {{\left( {\log {\text{S1}}} \right)}\hat{}2} \right]}} {\log {\left( {{\text{largest/smallest dose}}} \right)}}}} \right. \kern-\nulldelimiterspace} {\log {\left( {{\text{largest/smallest dose}}} \right)}}}} \), where N’ is the total number of animals at those doses whose expected anticonvulsant effects ranged between 4 and 6 probits; ^2 is the power of 2. Transforming the above-mentioned equations, one can obtain: \({\text{f\_}}_{{{\text{ratio\_S1}}}} {\text{ = }}{\left\{ {{\text{10}}^{{{\text{1}}{\text{.1}} \times {{\left[ {{\left( {\log {\text{S1}}} \right)}\hat{}2} \right]}} \mathord{\left/ {\vphantom {{{\left[ {{\left( {\log {\text{S1}}} \right)}\hat{}2} \right]}} {\log {\left( {{\text{largest/smallest dose}}} \right)}}}} \right. \kern-\nulldelimiterspace} {\log {\left( {{\text{largest/smallest dose}}} \right)}}}} } \right\}}^{{2.77/{\text{sqrt}}{\left( {{\text{N}}{\text{1}}} \right)}}} \) and, analogously, \({\text{f\_}}_{{{\text{ratio\_S2}}}} {\text{ = }}{\left\{ {{\text{10}}^{{{\text{1}}{\text{.1}} \times {{\left[ {{\left( {\log {\text{S2}}} \right)}\hat{}2} \right]}} \mathord{\left/ {\vphantom {{{\left[ {{\left( {\log {\text{S2}}} \right)}\hat{}2} \right]}} {\log {\left( {{\text{largest/smallest dose}}} \right)}}}} \right. \kern-\nulldelimiterspace} {\log {\left( {{\text{largest/smallest dose}}} \right)}}}} } \right\}}^{{2.77/{\text{sqrt}}{\left( {{\text{N}}2} \right)}}} \)

    Finally, one calculates f_ratio_SR, as presented above: \({\text{f\_}}_{{{\text{ratio\_SR = }}}} {\text{sqrt}}{\left\{ {{\left[ {{\text{log}}{\left( {{\text{f\_}}_{{{\text{ratio\_S1}}}} } \right)}} \right]}^{2} + {\left[ {\log {\left( {{\text{f\_}}_{{{\text{ratio\_S2}}}} } \right)}} \right]}^{2} } \right\}}\)

  3. 3.

    The comparison of the SR with f_ratio_SR. Noticeably, two DRR lines are parallel if the calculated SR< f_ratio_SR, otherwise the two DRR lines are convergent.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luszczki, J.J., Czuczwar, S.J. Biphasic characteristic of interactions between stiripentol and carbamazepine in the mouse maximal electroshock-induced seizure model: a three-dimensional isobolographic analysis. Naunyn-Schmied Arch Pharmacol 374, 51–64 (2006). https://doi.org/10.1007/s00210-006-0100-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-006-0100-3

Keywords

Navigation