Mathematische Zeitschrift

, Volume 240, Issue 2, pp 243–259

Projectivities in simplicial complexes and colorings of simple polytopes

  • Michael Joswig
Original article

DOI: 10.1007/s002090100381

Cite this article as:
Joswig, M. Math Z (2002) 240: 243. doi:10.1007/s002090100381

Abstract.

For each strongly connected finite-dimensional (pure) simplicial complex \(\Delta\) we construct a finite group \(\Pi(\Delta)\), the group of projectivities of \(\Delta\), which is a combinatorial but not a topological invariant of \(\Delta\). This group is studied for combinatorial manifolds and, in particular, for polytopal simplicial spheres. The results are applied to a coloring problem for simplicial (or, dually, simple) polytopes which arises in the area of toric manifolds.

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Michael Joswig
    • 1
  1. 1.Institut für Mathematik, MA 6-2, Technische Universität Berlin, Straße des 17. Juni 136, D-10623 Berlin, Germany, (e-mail: joswig@math.tu-berlin.de) DE

Personalised recommendations