Mathematische Zeitschrift

, Volume 235, Issue 4, pp 817–828

Bounded geodesics in manifolds of negative curvature

  • Viktor Schroeder
Original article

DOI: 10.1007/s002090000166

Cite this article as:
Schroeder, V. Math Z (2000) 235: 817. doi:10.1007/s002090000166

Abstract.

Let M be a complete Riemannian manifold with sectional curvature \(\leq -1\) and dimension \(\geq 3\). Given a unit vector \(v\in T^1M\) and a point \(x\in M\) we prove the existence of a complete geodesic through x whose tangent vector never comes close to v. As a consequence we show the existence of a bounded geodesic through every point in a complete negatively pinched manifold with finite volume and dimension \(\geq 3\).

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Viktor Schroeder
    • 1
  1. 1.Institut für Mathematik, Universität Zürich, Winterthurer Strasse 190, CH-8057 Zürich, Switzerland (e-mail: vschroed@math.unizh.ch)CH