Skip to main content
Log in

The Mahler measure of a Calabi–Yau threefold and special \(L\)-values

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

The aim of this paper is to prove a Mahler measure formula of a four-variable Laurent polynomial whose zero locus defines a Calabi–Yau threefold. We show that its Mahler measure is a rational linear combination of a special \(L\)-value of the normalized newform in \(S_4(\Gamma _0(8))\) and a Riemann zeta value. This is equivalent to a new formula for a \(_6F_5\)-hypergeometric series evaluated at 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahlgren, S., Ono, K.: A Gaussian hypergeometric series evaluation and Apéry number congruences. J. Reine Angew. Math. 518, 187–212 (2000)

    MATH  MathSciNet  Google Scholar 

  2. Ahlgren, S., Ono, K.: Modularity of a certain Calabi–Yau threefold. Monatsh. Math. 129(3), 177–190 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Berndt, B.C.: Ramanujan’s Notebooks Part III. Springer, New York, NY (1991)

    Book  MATH  Google Scholar 

  4. Bertin, M.J.: Mahler’s measure and \(L\)-series of \(K3\) hypersurfaces. In: Mirror Symmetry, V, vol. 38, pp. 3–18. AMS/IP Stud. Adv. Math. Amer. Math. Soc., Providence, RI (2006)

  5. Bertin, M.J.: Mesure de Mahler d’hypersurfaces \(K3\). J. Number Theory 128(11), 2890–2913 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bertin, M.J.: Measure de Mahler et série \(L\) d’une surface \(K3\) singulière In: Actes de la Conférence Fonctions \(L\) et Arithmétique, pp. 5–28. Publ. Math. Besançon Algèbre Théorie Nr. (2010)

  7. Bertin, M.J., Feaver, A., Fuselier, J., Lalín, M., Manes, M.: Mahler measures of some singular \(K3\)-surfaces, arXiv:1208.6240 (2012)

  8. Borwein, J.M.: Ramanujan and Pi, Notices of the AMS in “Srinivasa Ramanujan: Going strong at 125”. 59(11), 534–537 (2012)

  9. Borwein, J.M., Borwein, P.B.: Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. Wiley, New York, NY (1987)

    MATH  Google Scholar 

  10. Boyd, D.W.: Mahler’s measure and special values of \(L\)-functions. Exp. Math. 7(1), 37–82 (1998)

    Article  MATH  Google Scholar 

  11. Chudnovsky, D.B., Chudnovsky, G.V.: Approximations and complex multiplication according to Ramanujan. In: Ramanujan Revisited: Proceedings of the Centenary Conference, pp. 375–472. Urbana-Champaign, IL: Academic Press, Boston, MA (1987)

  12. Deninger, C.: Deligne periods of mixed motives, \(K\)-theory and the entropy of certain \(\mathbb{Z}^n\)-actions. J. Am. Math. Soc. 10(2), 259–281 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Frechette, S., Papanikolas, M.A., Root, J.: Finite Field Hypergeometric Functions and Counting Points on Families of Hypersurfaces, in preparation (2013)

  14. Greene, J.: Hypergeometric functions over finite fields. Trans. Am. Math. Soc. 301(1), 77–101 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  15. Guillera, J.: Hypergeometric identities for 10 extended Ramanujan-type series. Ramanujan J. 15(2), 219–234 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Guillera, J., Rogers, M.D.: Mahler measure and the WZ algorithm. Proc. Am. Math. Soc. (to appear)

  17. Lalín, M.N., Rogers, M.D.: Functional equations for Mahler measures of genus-one curves. Algebra Number Theory 1(1), 87–117 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. McCarthy, D., Papanikolas, M.A.: A finite field hypergeometric function associated to eigenvalues of a Siegel eigenform, arXiv:1205:1006 (2012)

  19. Ramanujan, S.: Modular equations and approximations to \(\pi \), [Q. J. Math. 45, 350–372 (1914)]. In: Collected Papers of Srinivasa Ramanujan, pp. 23–29. AMS Chelsea Publ. Providence, RI (2000)

  20. Rodriguez Villegas, F.: Modular Mahler Measures I. Topics in Number Theory (University Park, PA, 1997), pp. 17–48. Kluwer, Dordrecht (1999)

  21. Rogers, M.D.: New \(_5F_4\) hypergeometric transformations, three-variable Mahler measures, and formulas for \(1/\pi \). Ramanujan J. 18(3), 327–340 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Rogers, M., Zudilin, W.: From \(L\)-series of elliptic curves to Mahler measures. Compos. Math. 148(2), 385–414 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  23. Rogers, M., Zudilin, W.: On the Mahler measure of \(1+X+1/X+Y+1/Y\). Int. Math. Res. Notices (to appear)

  24. Samart, D.: Mahler measures as linear combinations of \(L\)-values of multiple modular forms, arXiv:1303.6376 (2013)

  25. Samart, D.: Three-variable Mahler measures and special values of modular and Dirichlet \(L\)-series. Ramanujan J. (to appear)

  26. van Geemen, B., van Straten, D.: The cusp forms of weight 3 on \(\Gamma _2(2,4,8)\). Math. Comput. 61(204), 849–872 (1993)

    MATH  Google Scholar 

  27. Verrill, H.A., Arithmetic of a certain Calabi-Yau threefold. In: Number theory (Ottawa, ON, 1996): CRM Proceedings of the Lecture Notes, vol. 19, pp. 333–340, Amer. Math. Soc. Providence, RI (1999)

  28. Wan, J.G.: Moments of products of elliptic integrals. Adv. Appl. Math. 48(1), 121–141 (2012)

    Article  MATH  Google Scholar 

  29. Zudilin, W.: Arithmetic hypergeometric series. Russ. Math. Surv. 66(2), 369–420 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors thank Wadim Zudilin for the useful suggestions which improved the exposition of the paper, and also for bringing Verrill’s paper to our attention. The authors are also grateful to the referee for useful comments, which help improve the exposition of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew A. Papanikolas.

Additional information

Matthew A. Papanikolas and Detchat Samart were partially supported by NSF Grant DMS-1200577.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papanikolas, M.A., Rogers, M.D. & Samart, D. The Mahler measure of a Calabi–Yau threefold and special \(L\)-values. Math. Z. 276, 1151–1163 (2014). https://doi.org/10.1007/s00209-013-1238-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-013-1238-6

Keywords

Mathematics Subject Classification (1991)

Navigation