Mathematische Zeitschrift

, Volume 273, Issue 3, pp 1139–1159

Action of Hecke operators on cohomology of modular curves of level two

Authors

    • Research Institute for Mathematical SciencesKyoto University
  • Takahiro Tsushima
    • Faculty of MathematicsKyushu University
Article

DOI: 10.1007/s00209-012-1047-3

Cite this article as:
Imai, N. & Tsushima, T. Math. Z. (2013) 273: 1139. doi:10.1007/s00209-012-1047-3
  • 187 Views

Abstract

We calculate the action of the p-th Hecke operator and the inertia group on the -adic cohomology of modular curve of level Γ0(p2) under the assumption p ≥ 13, using only a local geometrical method. We also calculate the action of the p-th Hecke operator and the inertia group on the -adic cohomology of the Lubin-Tate space of the same level over the maximal unramified extension of \({\mathbb{Q}_p}\).

Mathematics Subject Classification (2010)

Primary 11G18Secondary 14G35
Download to read the full article text

Copyright information

© Springer-Verlag 2012