Skip to main content
Log in

Space filling with metric measure spaces

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We show a sharp relationship between the existence of space filling mappings with an upper gradient in a Lorentz space and the Poincaré inequality in a general metric setting. As key examples, we consider these phenomena in Cantor diamond spaces and the Heisenberg groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balogh Z.M., Rogovin K., Zürcher T.: The Stepanov differentiability theorem in metric measure spaces. J. Geom. Anal. 14(3), 405–422 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bennett C., Sharpley R.: Interpolation of operators, volume 129 of Pure and Applied Mathematics. Academic Press Inc, Boston (1988)

    Google Scholar 

  3. Capogna L., Danielli D., Pauls S.D., Tyson J.T.: An introduction to the Heisenberg group and the sub-Riemannian isoperimetric problem, volume 259 of Progress in Mathematics. Birkhäuser, Basel (2007)

    Google Scholar 

  4. Cheeger J.: Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9(3), 428–517 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Costea Ş: Scaling invariant Sobolev-Lorentz capacity on \({\mathbb{R}^n}\). Indiana Univ. Math. J. 56(6), 2641–2669 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Hajłasz, P.: Sobolev spaces on metric-measure spaces. In Heat kernels and analysis on manifolds, graphs, and metric spaces (Paris, 2002), vol. 338 of Contemp. Math., pp. 173–218. Amer. Math. Soc., Providence (2003)

  7. Hajłasz P., Koskela P.: Sobolev met Poincaré. Mem. Amer. Math. Soc. 145(688), x101 (2000)

    Google Scholar 

  8. Hajłasz P., Tyson J.T.: Sobolev Peano cubes. Michigan Math. J. 56(3), 687–702 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Heinonen J.: Lectures on analysis on metric spaces. Universitext, Springer, New York (2001)

    Book  MATH  Google Scholar 

  10. Heinonen J., Koskela P.: Quasiconformal maps in metric spaces with controlled geometry. Acta Math. 181(1), 1–61 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Heinonen J., Koskela P., Shanmugalingam N., Tyson J.T.: Sobolev classes of Banach space-valued functions and quasiconformal mappings. J. Anal. Math. 85, 87–139 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kaufman, R.: A singular map of a cube onto a square. J. Diff. Geom. 14(4), 593–594 (1981) 1979

    Google Scholar 

  13. Kauhanen J., Koskela P., Malý J.: On functions with derivatives in a Lorentz space. Manuscripta Math. 100(1), 87–101 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Keith S.: A differentiable structure for metric measure spaces. Adv. Math. 183(2), 271–315 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Keith S., Zhong X.: The Poincaré inequality is an open ended condition. Ann. Math. 167(2), 575–599 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Korte R.: Geometric implications of the Poincaré inequality. Results Math. 50(1–2), 93–107 (2007)

    Article  MathSciNet  Google Scholar 

  17. Koskela P., MacManus P.: Quasiconformal mappings and Sobolev spaces. Studia Math. 131(1), 1–17 (1998)

    MATH  MathSciNet  Google Scholar 

  18. Malý J., Ziemer W.P.: Fine regularity of solutions of elliptic partial differential equations, volume 51 of Mathematical Surveys and Monographs. Amer. Math. Soc., Providence (1997)

    Google Scholar 

  19. Marola, N., Ziemer, W.P.: The coarea formula, condition (N) and rectifiable sets for Sobolev functions on metric spaces (preprint). http://arxiv.org/pdf/0807.2233v1

  20. Rado, T., Reichelderfer, P.V.: Continuous transformations in analysis. With an introduction to algebraic topology. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Bd. LXXV. Springer, Berlin (1955)

  21. Ranjbar-Motlagh A.: An embedding theorem for Sobolev type functions with gradients in a Lorentz space. Studia Math. 191(1), 1–9 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Romanov A.S.: On the absolute continuity of Sobolev-type functions on metric spaces. Sibirsk. Mat. Zh. 49(5), 1147–1156 (2008)

    MathSciNet  Google Scholar 

  23. Semmes S.: Finding curves on general spaces through quantitative topology, with applications to Sobolev and Poincaré inequalities. Selecta Math. (N.S.) 2(2), 155–295 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  24. Shanmugalingam N.: Newtonian spaces: an extension of Sobolev spaces to metric measure spaces. Rev. Mat. Iberoamericana 16(2), 243–279 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  25. Stein E.M.: Editor’s note: the differentiability of functions in R n. Ann. Math. 113(2), 383–385 (1981)

    MATH  Google Scholar 

  26. Troyanov, M.: Approximately Lipschitz mappings and Sobolev mappings between metric spaces. In: Proceedings on Analysis and Geometry (Russian) (Novosibirsk Akademgorodok, 1999), pp. 585–594. Izdat. Ross. Akad. Nauk Sib. Otd. Inst. Mat., Novosibirsk (2000)

  27. Tuominen, H.: Orlicz-Sobolev spaces on metric measure spaces. Ann. Acad. Sci. Fenn. Math. Diss. (135):86 (2004) (Dissertation, University of Jyväskylä, Jyväskylä (2004))

  28. Wildrick K., Zürcher T.: Peano cubes with derivatives in a Lorentz space. Illinois J. Math. 53(2), 365–378 (2009)

    MATH  MathSciNet  Google Scholar 

  29. Wildrick, K., Zürcher, T.: Mappings with an upper gradient in a Lorentz space. (preprint)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Wildrick.

Additional information

The first author was supported by Academy of Finland grants 120972 and 128144.

The second author was partially supported by the Swiss National Science Foundation and Academy of Finland grant 120972.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wildrick, K., Zürcher, T. Space filling with metric measure spaces. Math. Z. 270, 103–131 (2012). https://doi.org/10.1007/s00209-010-0787-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-010-0787-1

Mathematics Subject Classification (2000)

Navigation