Skip to main content
Log in

On the extension of the mean curvature flow

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Consider a family of smooth immersions \({F(\cdot,t): M^n\to \mathbb{R}^{n+1}}\) of closed hypersurfaces in \({\mathbb{R}^{n+1}}\) moving by the mean curvature flow \({\frac{\partial F(p,t)}{\partial t} = -H(p,t)\cdot \nu(p,t)}\), for \({t\in [0,T)}\). Cooper (Mean curvature blow up in mean curvature flow, arxiv.org/abs/0902.4282) has recently proved that the mean curvature blows up at the singular time T. We show that if the second fundamental form stays bounded from below all the way to T, then the scaling invariant mean curvature integral bound is enough to extend the flow past time T, and this integral bound is optimal in some sense explained below.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Beale J.T., Kato T., Majda A.: Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Comm. Math. Phys. 94(1), 61–66 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brakke K.A.: The Motion of a Surface by its Mean Curvature; Mathematical Notes, 20. Princeton University Press, Princeton (1978)

    Google Scholar 

  3. Cooper, A.A.: Mean curvature blow up in mean curvature flow. arxiv.org/abs/0902.4282

  4. Ecker K.: On regularity for mean curvature flow of hypersurfaces. Calc. Var. Partial Differ. Equ. 3(1), 107–126 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, xiv+517 pp. Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin (2001)

  6. Huisken G.: Flow by mean curvature of convex surfaces into spheres. J. Differ. Geom. 20(1), 237–266 (1984)

    MathSciNet  MATH  Google Scholar 

  7. Huisken G., Sinestrari C.: Mean curvature flow singularities for mean convex surfaces. Calc. Var. Partial Differ. Equ. 8(1), 1–14 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Michael J.H., Simon L.M.: Sobolev and mean-value inequalities on generalized submanifolds of R n. Comm. Pure Appl. Math. 26, 361–379 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  9. Sesum N.: Curvature tensor under the Ricci flow. Am. J. Math. 127(6), 1315–1324 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Smoczyk K.: Starshaped hypersurfaces and the mean curvature flow. Manuscr. Math. 95(2), 225–236 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Wang, B.: On the conditions to extend Ricci flow. Int. Math. Res. Not. 8, 30 p. (2008). Art. ID rnn012

  12. Xu, H.W., Ye, F., Zhao, E.T.: Extend mean curvature flow with finite integral curvature. arXiv:0905.1167v1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam Q. Le.

Additional information

Natasa Sesum was partially supported by NSF grant 0604657.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le, N.Q., Sesum, N. On the extension of the mean curvature flow. Math. Z. 267, 583–604 (2011). https://doi.org/10.1007/s00209-009-0637-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-009-0637-1

Keywords

Navigation