, Volume 263, Issue 4, pp 725-774
Date: 22 Oct 2008

Equicontinuous foliated spaces

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Riemannian foliations are characterized as those foliations whose holonomy pseudogroup consists of local isometries of a Riemannian manifold. Their main structural features are well understood since the work of Molina. In this paper we analyze the more general concept of equicontinuous pseudogroup of homeomorphisms, which gives rise to the notion of equicontinuous foliated space. We show that equicontinuous foliated spaces have structural properties similar to those known for Riemannian foliations: the universal covers of their leaves are in the same quasi-isometry class, leaf closures are homogeneous spaces, and the holonomy pseudogroup is indeed given by local isometries.