Mathematische Zeitschrift

, Volume 254, Issue 2, pp 333–357

Young modules and filtration multiplicities for Brauer algebras

Article

DOI: 10.1007/s00209-006-0950-x

Cite this article as:
Hartmann, R. & Paget, R. Math. Z. (2006) 254: 333. doi:10.1007/s00209-006-0950-x

Abstract

We define permutation modules and Young modules for the Brauer algebra Bk(r,δ), and show that if the characteristic of the field k is neither 2 nor 3 then every permutation module is a sum of Young modules, respecting an ordering condition similar to that for symmetric groups. Moreover, we determine precisely in which cases cell module filtration multiplicities are well-defined, as done by Hemmer and Nakano for symmetric groups.

Mathematics Subject Classification (2000)

20B3005E15

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.Mathematisches InstitutUniversität zu KölnKölnGermany
  2. 2.Mathematical Institute OxfordUnited Kingdom