Mathematische Zeitschrift

, Volume 255, Issue 2, pp 427–436

Singular Riemannian foliations on nonpositively curved manifolds

Authors

    • Mathematisches InstitutUniversität zu Köln
Article

DOI: 10.1007/s00209-006-0044-9

Cite this article as:
Töben, D. Math. Z. (2007) 255: 427. doi:10.1007/s00209-006-0044-9

Abstract

We prove the nonexistence of a proper singular Riemannian foliation admitting section in compact manifolds of nonpositive curvature. Then we give a global description of proper singular Riemannian foliations admitting sections on Hadamard manifolds. In addition by using the theory of taut immersions we provide a short proof of this result in the special case of a polar action.

Keywords

Singular Riemannian foliationsNonpositive curvature

Mathematics Subject Classification (2000)

53C1257R30

Copyright information

© Springer-Verlag 2006