Mathematische Zeitschrift

, Volume 249, Issue 2, pp 357–386

On Arkhipov’s and Enright’s functors

Article

DOI: 10.1007/s00209-004-0702-8

Cite this article as:
Khomenko, O. & Mazorchuk, V. Math. Z. (2005) 249: 357. doi:10.1007/s00209-004-0702-8

Abstract.

We give a description of Arkhipov’s and (Joseph’s and Deodhar-Mathieu’s versions of) Enright’s endofunctors on the category Open image in new window associated with a fixed triangular decomposition of a complex finite-dimensional semi-simple Lie algebra, in terms of (co)approximation functors with respect to suitably chosen injective (resp. projective) modules. We establish some new connections between these functors, for example we show that Arkhipov’s and Joseph’s functors are adjoint to each other. We also give several proofs of braid relations for Arkhipov’s and Enright’s functors.

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  1. 1.Mathematisches Institut der Universität FreiburgFreiburg im BreisgauGermany
  2. 2.Department of MathematicsUppsala UniversityUppsalaSweden

Personalised recommendations