Mathematische Annalen

, Volume 316, Issue 3, pp 465–483

Surfaces convexes fuchsiennes dans les espaces lorentziens à courbure constante

Authors

  • François Labourie
    • Mathématiques, (CNRS, UMR 8628), Bât. 425, Université de Paris-Sud, F-91405 Orsay Cedex, France (e-mail: francois.labourie[jean-marc.schlenker]@math.u-psud.fr)
  • Jean-Marc Schlenker
    • Mathématiques, (CNRS, UMR 8628), Bât. 425, Université de Paris-Sud, F-91405 Orsay Cedex, France (e-mail: francois.labourie[jean-marc.schlenker]@math.u-psud.fr)
Original article

DOI: 10.1007/s002080050339

Cite this article as:
Labourie, F. & Schlenker, J. Math Ann (2000) 316: 465. doi:10.1007/s002080050339

Abstract.

We show existence and uniqueness of the equivariant isometric immersions of Riemannian surfaces into Lorentz space-forms under conditions implying convexity, when we impose that the associated representations leave a point invariant.

Mathematics Subject Classification (1991):53C45; 53C50

Copyright information

© Springer-Verlag Berlin Heidelberg 2000