Mathematische Annalen

, Volume 353, Issue 4, pp 1273–1281

On the rationality of the moduli space of Lüroth quartics

Authors

  • Hans-Christian Graf von Bothmer
Open AccessArticle

DOI: 10.1007/s00208-011-0715-7

Cite this article as:
Böhning, C. & von Bothmer, H.G. Math. Ann. (2012) 353: 1273. doi:10.1007/s00208-011-0715-7
  • 199 Views

Abstract

We prove that the moduli space \({\mathfrak{M}_L}\) of Lüroth quartics in \({\mathbb{P}^2}\), i.e. the space of quartics which can be circumscribed around a complete pentagon of lines modulo the action of \({\mathrm{PGL}_3 (\mathbb{C})}\) is rational, as is the related moduli space of Bateman seven-tuples of points in \({\mathbb{P}^2}\).

Download to read the full article text

Copyright information

© The Author(s) 2011