Mathematische Annalen

, Volume 344, Issue 4, pp 947–962

Evolution families and the Loewner equation II: complex hyperbolic manifolds

Authors

    • Dipartimento di MatematicaUniversità di Roma “Tor Vergata”
  • Manuel D. Contreras
    • Camino de los Descubrimientos, s/n, Departamento de Matemática Aplicada II, Escuela Técnica Superior de IngenierosUniversidad de Sevilla
  • Santiago Díaz-Madrigal
    • Camino de los Descubrimientos, s/n, Departamento de Matemática Aplicada II, Escuela Técnica Superior de IngenierosUniversidad de Sevilla
Article

DOI: 10.1007/s00208-009-0340-x

Cite this article as:
Bracci, F., Contreras, M.D. & Díaz-Madrigal, S. Math. Ann. (2009) 344: 947. doi:10.1007/s00208-009-0340-x

Abstract

We prove that evolution families on complex complete hyperbolic manifolds are in one to one correspondence with certain semicomplete non-autonomous holomorphic vector fields, providing the solution to a very general Loewner type differential equation on manifolds.

Mathematics Subject Classification (2000)

Primary 34M45Secondary 32Q4532W99

Copyright information

© Springer-Verlag 2009